期刊文献+

基于命名及解析行为特征的异常域名检测方法 被引量:4

Anomaly domain name detection method based on characteristics of name and resolution behavior
下载PDF
导出
摘要 设计了DNS解析统计向量和检测特征向量,提出了一种基于命名及解析行为特征的异常域名检测方法,通过应用真实DNS解析数据的实验验证了该方法的有效性和可行性。实验表明,该方法较现有方法能够发现更多的异常域名,且具有较低的误报率。该方法是对现有方法检测能力的补充和提高,为僵尸网络等安全事件的检测与控制提供有效的信息支持和技术手段。 A statistical vector of domain name resolution and a characteristic vector of detection are designed in this paper. An anomaly domain name detection method based on the characteristics of name and resolution behavior is proposed.An experiment using the real resolution traffic of Domain Name System(DNS) is designed to validate the effectiveness and feasibility of this method.Experimental results show that compared with the existing methods,this method can find more anomaly domain names and has a relatively lower false of the existing methods, and moreover provides ty events such as botnets. positive rate.This method can be used to complement and enhance the ability effective information and technical support for detection and control of security events such as botnets.
出处 《计算机工程与应用》 CSCD 北大核心 2011年第20期50-52,共3页 Computer Engineering and Applications
基金 国家自然科学基金(No.60703021) 国家高技术研究发展计划(863)(No.2007AA01Z444 No.2007AA010501)~~
关键词 网络安全 异常域名 检测 解析行为 network security anomaly Domain Name System(DNS) detection resolution behavior
  • 相关文献

参考文献9

  • 1Herona S.Working the botnet:how dynamic DNS is revitalising the zombie army[J].Network Security,2007:9-11.
  • 2Dagon D.Botnet detection and response-the network is the infection[C]//OARC Workshop, 2005.
  • 3Villamarin-Salomon R, Brustoloni J C.Identifying botnets using anomaly detection techniques applied to DNS traffic[C]//Proceedings of the 5th IEEE Consumer Communications and Networking Conference, 2008 : 476-481.
  • 4Schonewille A, van Helmond D J.The domain name service as an IDS[Z].2006.
  • 5Choi H, Lee H, Lee H, et al.Botnet detection by monitoring group activities in DNS traffic[C]//Proceedings of the 7th IEEE International Conference on Computer and Information Technology Table of Contents, 2007 : 715-720.
  • 6Villamarin-Salomon R,Brustoloni J C.Bayesian bot detection based on DNS traffic similarity[C]//Proceedings of the 2009 ACM Symposium on Applied Computing (SAC), Hawaii, USA, 2009: 2035-2041.
  • 7Korea Information Security Agency(KISA).Botnet C&C server domain list[EB/OL]. [2009].http://www.knsp.org/sink_dns/total.uniq. dns.rr.txt.
  • 8ShadowServer[EB/OL]. [2009].http://www.shadowserver.org/.
  • 9Cymru[EB/OL].[2009].http://www.team-cymru.org/.

同被引文献29

  • 1阮光册.网络隔离技术的应用研究[J].网络安全技术与应用,2007(11):60-61. 被引量:4
  • 2ROSSOW C, DIETRICH C, BOS H. Detection of intrusions and malware, and vulnerability assessment[M]. Berlin: Springer, 2013.
  • 3MAHMOUD M, NIR M, MATRAWY A. A survey on botnet architec-tures, detection and defences[J]. International Journal of Network Se-curity, 2015, 17(3): 272-289.
  • 4PU Y, CHEN X, CUI X, et al. Data stolen trojan detection based on network behaviors[J]. Procedia Computer Science, 2013, 17: 828-835.
  • 5NIRMAL K, JANET B, KUMAR R. Phishing-the threat that still exists[C]//International Conference on Computing and Communica-tions Technologies(ICCCT). IEEE, 2015: 139-143.
  • 6CHEN C M, CHENG S T, CHOU J H. Detection of fast-flux domains[J]. Journal of Advances in Computer Networks, 2013, 1(2): 148-152.
  • 7VANIA J, MENIYA A, JETHVA H B. A review on botnet and detec-tion technique[J]. International Journal of Computer Trends and Tech-nology, 2013, 4(1): 23-29.
  • 8KHATTAK S, RAMAY N R, KHAN K R, et al. A taxonomy of botnet behavior, detection and defense[J]. Communications Surveys & Tuto-rials, IEEE, 2014, 16(2): 898-924.
  • 9GARCíA S, UHLí? V, REHAK M. Identifying and modeling botnet C&C behaviors[C]//The 1st International Workshop on Agents and Cyber Security. ACM, 2014.
  • 10YADAV S, REDDY A K K, REDDY A L, et al. Detecting algorithmi-cally generated malicious domain names[C]//The 10th ACM SIG-COMM Conference on Internet Measurement. Melbourne, Australia, 2010: 48-61.

引证文献4

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部