期刊文献+

基于日间高频交易数据的股市波动研究

Shares flutuation research based on day high frequency trade data
下载PDF
导出
摘要 本文利用上证综指在2005~2009年内的日间高频数据,通过已实现波动率这一概念对我国股市在这5年间的波动特性做了研究。进一步地,根据已实现波动率序列的统计特征,对其进行长记忆建模,并对模型的波动率预测效果与常规GARCH模型的预测效果做了对比分析。基于上证综指的研究结果表明,利用了日间高频信息的波动率模型在波动率预测上,比仅利用了收盘信息的GARCH模型更有优势。 This paper studies the volatility characteristics of China stock market using the intraday high-frequency data of the Shanghai Stock Exchange Composite Index(SSEC) from year 2005 to year 2009 via the idea of Realized Volatility.Moreover,according to the statistical properties of RV series of SSEC,this paper builds two long memory models on logarithmic RV and compares them with the conventional GARCH model in the domain of volatility forecasting.The analyses results show that the models using intraday high-frequency data are better than the model using only daily close price information in forecasting volatility.
作者 孙便霞
出处 《特区经济》 北大核心 2011年第6期118-119,共2页 Special Zone Economy
关键词 已实现波动率 高频数据 波动率预测 Realized Volatility High-frequency Data Volatility Forecasting
  • 相关文献

参考文献6

  • 1ndersen,T.G.,Bollerslev,T.,Diebold,F.X.,Labys,P.,(2OO3),"Modeling and forecasting realized volatility,"Econometrica, 71, 579-625.
  • 2Bollerslev,T.,(1986),"GeneralizedAutoregressive Conditional Heteroskedasticity,"Journal of Econometrics, 31, 307-327.
  • 3Corsi, F., (2004), "A simple long memory model of realized volatility," Working Paper, University of Southern Switzerland.
  • 4Corsi,F.,Mittnik,S.,Pigorsch,C., Pigorsch, U., (2008), "The volatility of realized volatility," Econometric Reviews, 27 (1): 46-78.
  • 5Engle,R.F.,(1982), "Autoregressive Conditional Heteroscedasticity with Estimates of Variance of United Kingdom Inflation,"Econometrica, 50, 987-1008.
  • 6McAleer,M.and Medei ros,M., (2008) ,"Realized Volatility: A Review," Econometric Reviews, 27, 10-45.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部