摘要
对著名的VanderPol方程受周期扰动的振荡解进行了一系列的数值模拟.由其数值模拟结果可知,VanderPol方程在零阶项受到正弦周期扰动时,其形如x-(1-x2)x十xμsint=0,当可调参数μ在[0.1,1]之间,本方程均表现出强非线性性质.在未受到扰动时,它存在极限环,即一个简单的吸引子,而受到扰动时极限坏消失了,出现了一个具有对称小圆环的奇怪吸引子.从其相平面的混沌吸引子及其流的分析可知,由于有了此项扰动,本动力系统呈现出阵发性的拟周期的混沌振荡运动.如果将方程中的sint换成cost其模拟结果基本一样.
A series of numerical analogue to oscillation solufion of Van der Pol equation which is disfurbed periodically has realized. From the numerical amalogue results,Van der Pol equation is describld as x - (1 -x2)x+xμ sin t= 0 while its zero order term is subjected to sinusoidal periodical disfurbance. And it expresses strong non-linearity when its adjustable parameter μ is in[0' 1' 1]. When it is not supjected to disturbance,it has a limit-cycle,which is a simple attractor,while it is subjected,the limit-cycle disappered and a strange attracfor with a small symmetric cycle occures. It is clear that,from the analysis of the phase plane chaotic attractor and its flow,this dynamic system expresses as chaotic oscillation motion 'with intermittent quasi-period because of the disturbance. If the sint is substituted for cost,the simulation result will be the same.
出处
《武汉交通科技大学学报》
1999年第6期663-666,共4页
Journal of Wuhan University of Technology(Transportation Science & Engineering)