期刊文献+

基于微型固体推力器阵列的轨道控制点火算法 被引量:4

Ignition algorithm of solid propellant micro-thruster array for orbit control
下载PDF
导出
摘要 为了解决基于微型固体推力器阵列轨道控制的推力器组合点火问题,优化了阵列布局,使其适用于轨道控制,得出了推力器坐标位置分布律。在此基础上研究了推力器阵列组合点火算法,建立了相应数学模型,进行了算法验证。仿真结果表明,设计的推力器阵列优化方案能够满足皮纳卫星轨道控制要求,所建数学模型能有效解决点火问题,设计的算法能够实现较快寻址。 To solve the problem of combined ignition of solid propellant micro-thruster array for orbit control,the layout of micro-thruster array was further optimized to enhance its applicability,and the distribution rule of thruster array was obtained.Combined ignition algorithm with thruster array was proposed.The mathematical model was established and the algorithm was verified.The simulation results show that the requirements of micro-satellite orbit control can be satisfied by the optimal design of thruster array.The mathematic model can solve the ignition problem,and ignition thruster can be addressed quickly by the proposed algorithm.
出处 《推进技术》 EI CAS CSCD 北大核心 2011年第3期301-306,共6页 Journal of Propulsion Technology
基金 "十一五"民用航天预先研究项目(D2220062901)
关键词 微型固体推力器阵列 点火算法 轨道控制 优化算法 Solid propellant micro-thruster array Ignition algorithm Orbit control Optimization algorithm
  • 相关文献

参考文献12

  • 1张高飞,尤政,胡松启,李葆萱,王伯雄.基于MEMS的固体推进器阵列[J].清华大学学报(自然科学版),2004,44(11):1489-1492. 被引量:25
  • 2Zhang K L, Chou S K, Ang S S. MEMS-based solid pro- pellant microthruster design, simulation, fabrication, and testing[ J]. Journal of Micro Electro Mechanical Systems,2004,13 (2) : 165-174.
  • 3Zhang K L, Chou S K. Performance prediction of a novel solid-propellant microtbruster [ J ]. Journal of propulsion and power,2006,22( 1 ) :56-63.
  • 4Alexeenko A A, Levin D A, Girnelshein S F. Numerical study of flow structure and thrust performance for 3-D MEMS-based nozzles[ R]. AIAA 2002-3194.
  • 5Ming-ttsun Wu. Development and characterization of ce- ramic micro chemical propulsion and combustion systems [ R ]. AIAA 2008-966.
  • 6尤政,张高飞,林杨,任大海.MEMS固体化学推进器设计与建模研究[J].光学精密工程,2005,13(2):117-126. 被引量:22
  • 7Shuji Tanaka, Ryuichiro Hosokawa, Shin-ichiro Toku- dome, et al. MEMS-based solid propellant rocket arraythruster with electrical feedthroughs [ J]. Trans. Japan Soc. Aero. Space Sci. , 2003,46( 151 ) :47-51.
  • 8董师卿,张兆良.固体火箭发动机原理[M].北京:北京理工大学出版社,1996:182-219.
  • 9刘林,等.航天动力学引论[M].南京:南京大学出版社,2005.
  • 10David H Lewis Jr, Siegfried W Janson, Ronald B Cohen, et al. Digital micropropuislon [J]. Sensors and Actuators: Physical, 2000,80 ( 2 ) : 143-156.

二级参考文献19

  • 1范存杰,李逢春.微型固体火箭发动机用短点火延迟点火器研究[J].推进技术,1995,16(3):42-45. 被引量:3
  • 2清华大学工程力学系.流体力学基础(下册)[M].北京:清华大学,1994..
  • 3ORIEUX S,ROSSI C,ESTEVE D. Compact model based on a lumped parameter approach for the prediction of solid propellant micro-rocket performance [J]. Sensor and Actuators A: 2002, 202: 383-391.
  • 4FLEETER R. Microspacecraft [M]. Reston, VA: The Edge City Press, 1995.
  • 5AGRAWAL B N,OKANO S. Microelectro- mechanical systems for spacecraft applications [C]. SPIE,2001,4746:1251-1257.
  • 6GEORGE T. Overview of MEMS/NEMS technology development for space applications at NASA/JPL [J].SPIE,2003,5116:136-148.
  • 7RACHEL L, KERRY L. Discussion of micro-newton thruster requirements for a drag-free control system[C]. The 16th Annual AIAA/Utah State University Conference on Small Satellites. 2002.
  • 8LEWIS D, JANSON S, COHEN R, et al. Digital micropropulsion [J]. Sensors and Actuators A: Physical, 2000, 80(2): 143-154.
  • 9CHALONER C P, OLIVIER B A H. Advanced microsatellite mission-deep space applications and constraints [R]. European Space Agency,2003.
  • 10BECHTOLD T,RUDNYI E B,KORVINK J G.Automatic order reduction of thermo-electric model for microthruster ignition unit[C].Proc. of International Conference on Simulation of Semiconductor Processes and Devices,2002:131-134.

共引文献52

同被引文献37

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部