摘要
研究了分形集SG(2,3)上随机游动转移概率及首中时的性质,结合分枝过程理论构造了SG(2,3)上的布朗运动,并研究了这种过程半群的对称的性质以及样本轨道的性质,证明了其样本轨道以概率1具有指数log3/log(90/17)的Hoder连续性.此外,对过程的首中时也进行了讨论,并得到了首中时的分布函数及矩的估计.
In this paper, we first discuss transition probability and hitting time of the simple random walk on the fractal SG(2,3), and combined with branch processes theory, We construct a Feller process X on SG (2, 3), and prove that the semigroup of X is symmetric respect to some radon measure, and the sample paths are holder contlnuous with the order log3/log(17)in probabllity one. further more, the hitting time are also discussed, an estimate for the distribution function and moment of hitting time is given.
出处
《长沙铁道学院学报》
CSCD
1999年第4期6-11,共6页
Journal of Changsha Railway University
基金
国家自然科学基金