摘要
Eutrophication or the process of nutrient enrichment of stagnant waters due to excessive use of fertilizer is becoming a critical issue worldwide. Lake Gregory, an artificial lake situated in Nuwara Eliya, Sri Lanka was once a very attractive landscape feature and recreational area attracting a large number of visitors. Rapid urbanization in surrounding areas and the consequent intensification of agricultural and industrial activities led to eutrophication and siltation in the lake. Present study was conducted to detect cyanobacterial diversity and their ability to produce hepatotoxic microcystins using polymerase chain reaction (PCR)-based techniques. Twenty five water samples (surface and bottom) were collected from the lake and total nitrogen and total carbon were estimated. Cyanobacterial cultures were grown in appropriate media and microscopic observations were used to determine the morphological diversity of cyanobacteria isolated from different sites. Genomic DNA was isolated and purified from cyanobacteria using Boom's method. DNA samples were analyzed by PCR with oligonucleotide primers for 16S rRNA gene and mcyA gene of the operon that encodes a microcystin synthetase. The 16S rRNA gene sequences revealed the presences of cyanobacteria belong to Synechococcus sp., Microcystis aeruginosa, Calothrix sp., Leptolyngbya sp., Limnothrix sp., order Oscillatoriales and order Chroococcales. The sequences obtained from this study were deposited in the database under the accession numbers (GenBank: GU368104-GU368116). PCR amplification of mcyA primers indicated the potential for toxin formation of isolated M. aeruginosa from Lake Gregory. This preliminary study shows that the Lake Gregory is under the potential risk of cyanobacterial toxicity. Clearly more work is needed to extend this finding and clarify if other cyanobacterial isolates have genetic potential to produce microcystin since this lake is utilized for recreational activities.
Eutrophication or the process of nutrient enrichment of stagnant waters due to excessive use of fertilizer is becoming a critical issue worldwide. Lake Gregory, an artificial lake situated in Nuwara Eliya, Sri Lanka was once a very attractive landscape feature and recreational area attracting a large number of visitors. Rapid urbanization in surrounding areas and the consequent intensification of agricultural and industrial activities led to eutrophication and siltation in the lake. Present study was conducted to detect cyanobacterial diversity and their ability to produce hepatotoxic microcystins using polymerase chain reaction (PCR)-based techniques. Twenty five water samples (surface and bottom) were collected from the lake and total nitrogen and total carbon were estimated. Cyanobacterial cultures were grown in appropriate media and microscopic observations were used to determine the morphological diversity of cyanobacteria isolated from different sites. Genomic DNA was isolated and purified from cyanobacteria using Boom's method. DNA samples were analyzed by PCR with oligonucleotide primers for 16S rRNA gene and mcyA gene of the operon that encodes a microcystin synthetase. The 16S rRNA gene sequences revealed the presences of cyanobacteria belong to Synechococcus sp., Microcystis aeruginosa, Calothrix sp., Leptolyngbya sp., Limnothrix sp., order Oscillatoriales and order Chroococcales. The sequences obtained from this study were deposited in the database under the accession numbers (GenBank: GU368104-GU368116). PCR amplification of mcyA primers indicated the potential for toxin formation of isolated M. aeruginosa from Lake Gregory. This preliminary study shows that the Lake Gregory is under the potential risk of cyanobacterial toxicity. Clearly more work is needed to extend this finding and clarify if other cyanobacterial isolates have genetic potential to produce microcystin since this lake is utilized for recreational activities.
基金
Supported by Government of Sri Lanka