期刊文献+

基于张量投票的快速网格分割算法 被引量:2

Fast mesh segmentation algorithm based on tensor voting
下载PDF
导出
摘要 为了根据网格模型上的尖锐几何特征对三角网格曲面进行合理分片,提出一种新的基于张量投票(tensorvoting)理论的三角网格分割算法.该算法将输入网格模型上所有的三角面片聚类成由用户指定数目的若干个区域,使得区域内部三角面片上点的尖锐几何特征尽可能接近.根据网格模型顶点上基于法向的张量投票矩阵的特征值分布与顶点尖锐几何特征的对应关系,算法将网格分割转化为能量最小化问题,并适当简化能量函数的形式,用快速聚类算法求解.通过引入启发式约束,算法较好地防止了分割区域的分离.实验表明:与已有算法相比,该算法具有较快的速度,同时能够较好地分割网格曲面上的尖锐几何特征区域. A novel algorithm for triangular mesh segmentation based on tensor voting theory was proposed to correctly segment the input triangular mesh according to the sharp geometrical features on the mesh.All triangles of the input mesh clustered to a user-specified number of regions such that the sharp geometrical features of vertices belonging to the same region were as similar as possible.With the correspondence between the sharp geometrical features and the distribution of normal tensor voting matrix's eigen values,the mesh segmentation was converted to an energy minimization problem.Then a fast clustering method was applied to solve the problem with simplified energy terms.By introducing a heuristic constraint,no segment was separated into disconnected parts with the algorithm.Experimental results show that the algorithm is faster and the regions with sharp geometrical features are segmented better compared with some existing algorithms.
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2011年第6期999-1005,共7页 Journal of Zhejiang University:Engineering Science
基金 国家自然科学基金资助项目(60773179 60970079) 国家自然科学基金资助项目(60933008) 宁波市自然科学基金资助项目(2009A610071)
关键词 网格分割 张量投票理论 聚类 法向 几何特征 mesh segmentation tensor voting theory clustering normal geometrical feature
  • 相关文献

参考文献35

  • 1SHU Z, WANG G, DONG C. Adaptive triangular mesh coarsening with centroidal Voronoi tesse[lations [J] Journal of Zhejiang University-Science A, 2009, 10 (4): 535 - 545.
  • 2COHEN-STEINER D, ALLIEZ P, DESBRUN M. Vari- ational shape approximation[C]// ACM SIC, GRAPH 2004 Papers. Los Angeles: -ACM, 2004:905 914.
  • 3GELFAND N, GUIBAS L J. Shape segmentation using local slippage analysis[C]// Proceedings of the 2004 Eu- rographics/ACM SIGGRAPH Symposium on Geometry Processing. Nice, France: ACM, 2004: 214- 223.
  • 4RENIERS D, TELEA A. Hierarchical part type seg- mentation using voxel-based curve skeletons [J]. The Visual Computer, 2008, 24(6) : 383 - 395.
  • 5LAI Y K, HU S M, MARTIN R R, et al. Fast mesh segmentation using random walks[C]// Proceedings of the 2008 ACM Symposium on Solid and Physical Model- ing. New York: ACM, 2008: 183-191.
  • 6MORTARA M, PATAN G, SPAGNOLO M. From geometric to semantic human body models[J]. Comput- ers & Graphics, 2006, 30(2): 185- 196.
  • 7VARADY T, MARTIN R R, COX J. Reverse engi- neering of geometric models an introduction[J]. Com- puter-Aided Design, 1997, 29(4): 255- 268.
  • 8SHAH J J, ANDERSON D, KIM Y S, et al. A dis- course on geometric feature recognition from CAD mod- els[J]. Journal of Computing and Information Science in Engineering, 2001, 1(1): 41-51.
  • 9IP C Y, REGIA W C. Manufacturing classification of CAD models using curvature and SVMs[C]// Proceed- ings of the International Conference on Shape Modeling and Applications 2005. Cambridge: IEEE Computer So ciety, 2005:363 - 367.
  • 10SANDER P V, SNYDER J, GORTLER S J, et al. Texture mapping progressive meshes[C]// Proceedings of the 28th Annual Conference on Computer Graphicsand Interactive Techniques. New York: ACM, 2001: 409 - 416.

二级参考文献18

  • 1孙晓鹏,李华.三维网格模型的分割及应用技术综述[J].计算机辅助设计与图形学学报,2005,17(8):1647-1655. 被引量:49
  • 2MANGAN A P, WHITAKER R T. Surface segmentation using morphological watersheds [C]//Proceedings of IEEE Visualization'98. Chapel Hill: IEEE, 1998: 29- 32.
  • 3MANGAN A P, WHITAKER R T. Partitioning 3D surface meshes using watershed segmentation [J]. IEEE Transactions on Visualization and Computer Graphics, 1999, 5(4): 308-321.
  • 4KATZ S, TAL A. Hierarchical mesh decomposition using fuzzy clustering and cuts [J]. ACM Transactions on Graphics, 2003, 22(3): 954-961.
  • 5LEVY B, PETITJEAN S, RAY N, et al. Least squares conformal maps for automatic texture atlas generation [C] // Proceedings of SIGGRAPH 2002. San Antonio, ACM, 2002: 362-371.
  • 6LEE W F, DOBKIN D, SWELDENS W, et al. Multiresolution mesh morphing [C]// Proceedings of SIGGRAPH 1999. Los Angeles: ACM, 1999:343-350.
  • 7KHODAKOVSKY A, SCHRODER P, SWELDENS W. Progressive geometry compression [C] // Proceedings of SIGGRAPH 2000. New Orleans: ACM, 2000: 271 - 278.
  • 8RAY N, VALLET B, LI W, et al. Periodic global parameterization [J]. ACM Transactions on Graphics, 2005, 25(4) : 1460- 1485.
  • 9LEE A, SWELDEN W, SCHRODER P, et al. MAPS: multi-resolution adaptive parameterization of surfaces [C]// Proceedings of SIGGRAPH 1998. Addison Wesley: ACM, 1998: 95-104.
  • 10KHODAKOVSKY A, LITKE N, SCHRODER P. Globally smooth parameterizations with low distortion [J]. ACM Transactions on Graphics, 2003, 22(3) : 350 - 357.

共引文献3

同被引文献19

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部