期刊文献+

遗传最小二乘支持向量机法预测时用水量 被引量:15

Genetic least squares support vector machine approach to hourly water consumption prediction
下载PDF
导出
摘要 为解决传统最小二乘支持向量机采用交叉验证确定参数耗时较长的问题,提出基于遗传算法和最小二乘支持向量机的城市时用水量预测方法.根据城市时用水量序列具有较强相关性的特点,利用自相关系数法分析时用水量序列的变化规律,并引入二进制编码的自适应遗传算法优化最小二乘支持向量机的超参数,采用交叉验证法确定遗传算法个体的适应值,建立了时用水量预测模型.实例分析表明:与基于传统最小二乘支持向量机的时用水量预测方法相比,基于遗传算法和最小二乘支持向量机的时用水量预测方法计算速度更快,预测精度更高. As traditional least squares support vector machine(LSSVM) parameter selection using cross-validation is time-consuming,a city hourly water consumption forecasting method based on genetic algorithm(GA) and LSSVM was proposed.An autocorrelation method was used to analyze the hourly water consumption series according to the strong serial correlation.A self-adaptive binary GA was introduced to optimize the hyper-parameters of LSSVM,and the individual fitness values in GA were determined by cross-validation.Then a hourly water consumption forecasting model was built.Case study shows that the proposed hourly water consumption forecasting method based on GA and LSSVM has higher computing speed and better estimating performance than the traditional LSSVM–based method.
作者 陈磊
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2011年第6期1100-1103,共4页 Journal of Zhejiang University:Engineering Science
基金 国家自然科学基金资助项目(50878108) 浙江省教育厅科研资助项目(20070194)
关键词 遗传算法 最小二乘支持向量机 时用水量 相关分析 genetic algorithm LSSVM hourly water consumption correlation analysis
  • 相关文献

参考文献5

二级参考文献33

  • 1刘洪波,张宏伟,田林,王新芳.STUDY ON ARTIFICIAL NEURAL NETWORK FORECASTING METHOD OF WATER CONSUMPTION PER HOUR[J].Transactions of Tianjin University,2001,7(4):233-237. 被引量:5
  • 2严煦世 赵洪宾.给水管网理论与计算[M].北京:中国建筑工业出版社,1986..
  • 3Zhou S L, McMahon T A. Forecasting operational demand for an urban water supply zone[J]. J Hydr, 2002, 259:189-202.
  • 4Ashu J, Ashish K V. Short-term water demand forecast modelling at IIT kanpur using artificial neural networks[J]. Water Resour. Mgmt., 2001, 15: 299-321.
  • 5Jain D A, Joshi U C. Short-term water demand forecasting using artificial neural networks: IIT Kanpur experience [A]. Proc 15th International Conf on Pattern Recognition[C], 2000, 2: 459-462.
  • 6Damas M., Salmeron M., ANNs and GAs for predictive control of water supply networks[A], Neural Networks, IJCNN 2000[C], 4: 365 -370.
  • 7Smaoui N, BuHamra S. A combination of Box-Jenkins analysis and neural networks to model and predict water consumption in Kuwait[A]. Neural Networks, IJCNN '2002[C], 2: 1678-1683.
  • 8Beckwith S F, Wong C K P. Application of dynamical system theory for short-term water load demand prediction[A], Proc 2th Australian and New Zealand Conf on Intelligent Information Systems[C], 1994: 283-287.
  • 9Aijun An, Christine C. Applying knowledge discovery to predict water-supply consumption[J], Expert, IEEE, 1997,12 (4): 72 -78.
  • 10Narate L, Christine W, et al. A toolset for construction of hybrid intelligent forecasting systems: application for water demand prediction[J]. Artificial Intelligence in Engineering, 1999, 13: 21-42.

共引文献19

同被引文献153

引证文献15

二级引证文献88

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部