期刊文献+

Qualitative Analysis of a Strongly Coupled Prey-Predator Model

Qualitative Analysis of a Strongly Coupled Prey-Predator Model
原文传递
导出
摘要 This paper investigates a strongly coupled reaction-diffusion model with Holling-II reaction function in a bounded domain with homogeneous Neumann boundary condition. The sufficient condition for the existence and non-existence of the non-constant positive solutions are obtained. Moreover, we prove that the nonlinear diffusion terms can create non-constant positive equilibrium solutions when the corresponding model without nonlinear diffusion term fails. This paper investigates a strongly coupled reaction-diffusion model with Holling-II reaction function in a bounded domain with homogeneous Neumann boundary condition. The sufficient condition for the existence and non-existence of the non-constant positive solutions are obtained. Moreover, we prove that the nonlinear diffusion terms can create non-constant positive equilibrium solutions when the corresponding model without nonlinear diffusion term fails.
出处 《Wuhan University Journal of Natural Sciences》 CAS 2011年第4期285-292,共8页 武汉大学学报(自然科学英文版)
基金 Supported by the National Natural Science Foundation of China (11001160) the Scientific Research Plan Projects of Shaanxi Education Department (09JK480) the President Fund of Xi’an Technological University(XAGDXJJ0830)
关键词 CROSS-DIFFUSION prey-predator system non-constant positive equilibrium solutions cross-diffusion prey-predator system non-constant positive equilibrium solutions
  • 相关文献

参考文献26

  • 1Andrews J F. A mathematical model for the continuous cul- ture of microorganisms utilizing inhibitory substrates [J]. Biotechnol Bioeng, 1968, 10: 707-723.
  • 2Collings J B. The effects of the functional response on the bifurcation behavior of a mite predator-prey interaction model [J]. JMath Biol, 1997, 36: 149-168.
  • 3Edwards V H. Influence of high substrate concentations on microbial kinetics[J]. Biotechnol Bioeng, 1970, 12: 679-712.
  • 4Sokol W, Howell J A. Kenetics of phenol oxidation by washed cells[J]. Biotechnol Bioeng, 1981, 23: 2039-2049.
  • 5Ruan S G, Xiao D M. Global analysis in a predator-prey system with nonmonotonic functional response[J]. SlAM J Appl Math, 2001, 61: 1445-1472.
  • 6Okubo A. Diffusion and Ecological Problems: Mathematical Models[M]. Berlin: Speringer-Verlag, 1980.
  • 7Johnson J A. Banach spaces of Lipschitz functions and vec- tor-valued Lipschitz functions[J]. Trans Amer Math Soc, 1970. 148: 147-169.
  • 8Shigesada N, Kawasaki K, Teramoto E. Spatial segregation of interacting species[J]. J Theoret Biol, 1979, 79: 83-99.
  • 9Amann H. Dynamic theory of quasilinear parabolice qua- tions-Ⅲ. Global existence[J]. Math Z, 1989, 202: 219-250.
  • 10Choi Y S, Lui R, Yamada Y. Existence of global solutions for the Shigesada-Kawasaki-Tera-moto model with strongly coupledcross-diffusion[J]. DiscreteContin Dyn Syst, 2004, 10: 719-730.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部