期刊文献+

Estimation of the Type of Low Energy Discharge in GIS Adopting Characteristic Gas 被引量:7

Estimation of the Type of Low Energy Discharge in GIS Adopting Characteristic Gas
原文传递
导出
摘要 In order to guarantee safe operations, low energy discharge within gas insulated switchgear (GIS) should be detected as soon as possible before they develop severely and cause final breakdown failures. This paper aims to present a GIS discharge diagnosis technique adopting gaseous decompositions. To reach this aim, needle-plate electrode and the sphere-plate electrode with metallic particles on the plate are designed to simulate two kinds of low energy discharge, namely, corona discharge and spark discharge, respectively. After sampling and analyzing the gases, different yields of gaseous by-products under different types of low energy discharge are obtained. Based on the decomposition mechanisms reported by previous researches and the experiment results, it can be concluded that S2OF10, SO2F2 , and SO2 can be used as the characteristic gas to identify low energy discharge; the increment of S2OF10 can indicate the occurrence of low energy discharges while the volume ratio between SO2F2 and SO2 can define the type of low energy discharge. In order to guarantee safe operations, low energy discharge within gas insulated switchgear (GIS) should be detected as soon as possible before they develop severely and cause final breakdown failures. This paper aims to present a GIS discharge diagnosis technique adopting gaseous decompositions. To reach this aim, needle-plate electrode and the sphere-plate electrode with metallic particles on the plate are designed to simulate two kinds of low energy discharge, namely, corona discharge and spark discharge, respectively. After sampling and analyzing the gases, different yields of gaseous by-products under different types of low energy discharge are obtained. Based on the decomposition mechanisms reported by previous researches and the experiment results, it can be concluded that S2OF10, SO2F2 , and SO2 can be used as the characteristic gas to identify low energy discharge; the increment of S2OF10 can indicate the occurrence of low energy discharges while the volume ratio between SO2F2 and SO2 can define the type of low energy discharge.
出处 《Wuhan University Journal of Natural Sciences》 CAS 2011年第4期319-324,共6页 武汉大学学报(自然科学英文版)
基金 Supported by the Scotland-China Higher Education Research Partnership for Ph. D. Studies ([2010]6044)
关键词 gas insulated switchgear (GIS) SF6 decomposition low energy discharge DIAGNOSIS gas insulated switchgear (GIS) SF6 decomposition low energy discharge diagnosis
  • 相关文献

参考文献4

二级参考文献56

共引文献289

同被引文献76

引证文献7

二级引证文献84

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部