期刊文献+

Nonlinear identification of systems with parametric excitation 被引量:2

Nonlinear identification of systems with parametric excitation
原文传递
导出
摘要 In this paper, the incremental harmonic balance nonlinear identification (IHBNID) is presented for modelling and parametric identification of nonlinear systems. The effects of harmonic balance nonlinear identification (HBNID) and IHBNID are also studied and compared by using numerical simulation. The effectiveness of the IHBNID is verified through the Mathieu-Duffing equation as an example. With the aid of the new method, the derivation procedure of the incremental harmonic balance method is simplified. The system responses can be represented by the Fourier series expansion in complex form. By keeping several lower-order primary harmonic coefficients to be constant, some of the higher-order harmonic coefficients can be self-adaptive in accordance with the residual errors. The results show that the IHBNID is highly efficient for computation, and excels the HBNID in terms of computation accuracy and noise resistance.
出处 《Science China(Technological Sciences)》 SCIE EI CAS 2011年第8期2080-2089,共10页 中国科学(技术科学英文版)
基金 supported by the National Natural Science Foundation of China (Grant Nos. 10672141, 10732020, and 11072008)
关键词 nonlinear system identification incremental harmonic balance parameter excitation nonlinear systems 参数激励系统 非线性识别 增量谐波平衡法 Duffing方程 非线性系统建模 计算精度 参数识别 数值模拟
  • 相关文献

参考文献12

  • 1J. H. Shen,K. C. Lin,S. H. Chen,K. Y. Sze.Bifurcation and route-to-chaos analyses for Mathieu–Duffing oscillator by the incremental harmonic balance method[J]. Nonlinear Dynamics . 2008 (4)
  • 2M. Thothadri,F. C. Moon.Nonlinear System Identification of Systems with Periodic Limit-Cycle Response[J]. Nonlinear Dynamics . 2005 (1-2)
  • 3M. Thothadri,R. A. Casas,F. C. Moon,R. D’Andrea,C. R. Johnson.Nonlinear System Identification of Multi-Degree-of-Freedom Systems[J]. Nonlinear Dynamics . 2003 (3)
  • 4Yuan CM,Feeny BF.Parametric identification of chaotic systems. Journal of Vibration and Control . 1998
  • 5Casas RA,Jacobson CA,Rey GJ,et al.Harmonic Balance Methods for Nonlinear Feedback Identification. . 1997
  • 6S.L. Lau.The incremental harmonic balance method and its applications to nonlinear vibrations. Proceedings of the International Conference on Structural Dynamics, Vibration, Noise and Control . 1995
  • 7Ljung L.System Identification: Theory for the User. . 1987
  • 8Billings SA.Identification of nonlinear systems-a survey. IEE Proceedings-Part D, Control Theory and Applications . 1980
  • 9Haber R,Unbehauen H.Structure identification of nonlinear dynamic systems-a survey on input/output approaches. Automatica . 1990
  • 10Yasuda K,Kawamura S,Watanabe K.Identification of nonlinear multi-degree-of-freedom systems (presentation of an identification technique). JSME International Journal . 1988

同被引文献6

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部