期刊文献+

Inverse problem for Chaplygin’s nonholonomic systems 被引量:4

Inverse problem for Chaplygin’s nonholonomic systems
原文传递
导出
摘要 Chaplygin’s nonholonomic systems are familiar mechanical systems subject to unintegrable linear constraints, which can be reduced into holonomic nonconservative systems in a subspace of the original state space. The inverse problem of the calculus of variations or Lagrangian inverse problem for such systems is analyzed by making use of a reduction of the systems into new ones with time reparametrization symmetry and a genotopic transformation related with a conformal transformation. It is evident that the Lagrangian inverse problem does not have a direct universality. By meaning of a reduction of Chaplygin’s nonholonomic systems into holonomic, regular, analytic, nonconservative, first-order systems, the systems admit a Birkhoffian representation in a star-shaped neighborhood of a regular point of their variables, which is universal due to the Cauchy-Kovalevski theorem and the converse of the Poincaré lemma.
出处 《Science China(Technological Sciences)》 SCIE EI CAS 2011年第8期2100-2106,共7页 中国科学(技术科学英文版)
基金 supported by the National Natural Science Foundation of China (Grant Nos. 10932002, 10872084, and 10472040) the Outstanding Young Talents Training Fund of Liaoning Province of China (Grant No. 3040005) the Research Program of Higher Education of Liaoning Prov- ince, China (Grant No. 2008S098) the Program of Supporting Elitists of Higher Education of Liaoning Province, China (Grant No. 2008RC20) the Program of Constructing Liaoning Provincial Key Laboratory, China (Grant No. 2008403009)
关键词 nonholonomic constraints inverse problems Birkhoff’s equations geonotopic transformations conditions of self-adjointness 非完整系统 逆问题 非保守系统 完整约束 拉格朗日 线性约束 机械系统 状态空间
  • 相关文献

参考文献27

  • 1GUO YongXin1,LIU Chang2,WANG Yong3,LIU ShiXing1 & CHANG Peng2 1 College of Physics,Liaoning University,Shenyang 110036,China,2 School of Aerospace Engineering,Beijing Institute of Technology,Beijing 110081,China,3 School of Basic Medical Science,Guangdong Medical College,Dongguan 523808,China.Nonholonomic mapping theory of autoparallel motions in Riemann-Cartan space[J].Science China(Physics,Mechanics & Astronomy),2010,53(9):1707-1715. 被引量:6
  • 2GUO YongXin,LIU Chang,LIU ShiXing,CHANG Peng.Decomposition of almost Poisson structure of non-self-adjoint dynamical systems[J].Science China(Technological Sciences),2009,52(3):761-770. 被引量:5
  • 3Arnold V I,Kozlov V V,Neishtadt A I.Mathematical aspects of classical and celestial mechanics. Encyclopaedia of Mathematical Science . 1988
  • 4Sarlet W.The Helmholtz conditions revisited: A new approach to the inverse problem of Lagrangian dynamics. Journal of Physics A Mathematical and General . 1982
  • 5Henneaux M.On the inverse problem of the calculus of variations in field theory. Journal of Physics A Mathematical and General . 1984
  • 6Morando P,Vignolo S.A geometric apporach to constrained me- chanical systems, symmetries and inverse problems. Journal of Physics A Mathematical and General . 1998
  • 7Sarlet W,Thompson G,Prince G E.The inverse problem in the cal- culus of variations: The use of geometrical calculus in Douglas’’s analysis. Transactions of the American Mathematical Society . 2002
  • 8Guo Y X,Liu S X,Liu C, et al.Influence of nonholonomic con- straints on variations, symplectic structure and dynamics of me- chanical systems. Journal of Mathematical Physics . 2007
  • 9Cortés,J. Geometric, Control and Numerical Aspects of Nonholonomic Systems . 2002
  • 10Namark Y,Fufaev N A.Dynamics of non-holonomic systems. . 1972

二级参考文献40

  • 1GUO YongXin,LIU Chang,LIU ShiXing,CHANG Peng.Decomposition of almost Poisson structure of non-self-adjoint dynamical systems[J].Science China(Technological Sciences),2009,52(3):761-770. 被引量:5
  • 2郭永新,罗绍凯,梅凤翔.非完整约束系统几何动力学研究进展:Lagrange理论及其它[J].力学进展,2004,34(4):477-492. 被引量:26
  • 3H. Kleinert,A. Pelster.Letter: Autoparallels From a New Action Principle[J]. General Relativity and Gravitation . 1999 (9)
  • 4Hehl F W,McCrea J D,Mielke E W.Metric-affine gauge theory of gravity:Field equations,Noether identities,world spinors,and breaking of dilation invariance. Physics Reports . 1995
  • 5Trautman A.Einstein-Cartan theory. . 2008
  • 6Bilby B A,Bullough R,Smith E.Continuous distributions of dislocations:A new application of methods of non-Riemannian geometry. Proceedings of the Royal Society Series A Mathematical Physical and Engineering Sciences . 1955
  • 7Sciama D W.On the analogy between charge and spin in general relativity. Recent Developments in General Relativity . 1962
  • 8Cacciatori S L,Caldarelli M M,Giacomini A,et al.Chern-Simons formulation of three-dimensional gravity with torsion and nonmetricity. Journal of Applied Geophysics . 2006
  • 9Camacho A,Maciás A.Space-time torsion contribution to quantum interference phases. Physics Letters B . 2005
  • 10Sotiriou T P,Liberatia S.Metric-affine f(R) theories of gravity. Annal Phys . 2007

共引文献8

同被引文献14

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部