期刊文献+

Chemical composition of PM_(2.5) during winter in Tianjin,China 被引量:61

Chemical composition of PM_(2.5) during winter in Tianjin,China
原文传递
导出
摘要 PM2.5 samples for 24h were collected during winter in Tianjin, China. The ambient mass concentration and chemical composition of the PM2.5 were determined. Ionic species were analyzed by ion chromatography, while carbonaceous species were determined with the IMPROVE thermal optical reflectance (TOR) method, and inorganic elements were measured by inductively coupled plasma-atomic emission spectrometer. The daily PM2.5 mass concentrations ranged from 48.2 to 319.2 μg/m^3 with an arithmetic average of 144.6 μg/m^3. The elevated PM2.5 in winter was mostly attributed to combustion sources such as vehicle exhaust, heating, cooking and industrial emissions, low wind speeds and high relative humidity (RH), which were favorable for pollutant accumulation and formation of secondary pollutants. By chemical mass balance, it was estimated that about 89.1% of the PM2.5 mass concentrations were explained by carbonaceous species, secondary particles, crustal matters, sea salt and trace elements. Organic material was the largest contributor, accounting for about 32.7% of the total PM2.5 mass concentrations. SO4^2-, NO3^-, Cl^- and NH4^+ were four major ions, accounting for 16.6%, 11.5%, 4.7% and 6,0%, respectively, of the total mass of PM2.5. PM2.5 samples for 24h were collected during winter in Tianjin, China. The ambient mass concentration and chemical composition of the PM2.5 were determined. Ionic species were analyzed by ion chromatography, while carbonaceous species were determined with the IMPROVE thermal optical reflectance (TOR) method, and inorganic elements were measured by inductively coupled plasma-atomic emission spectrometer. The daily PM2.5 mass concentrations ranged from 48.2 to 319.2 μg/m^3 with an arithmetic average of 144.6 μg/m^3. The elevated PM2.5 in winter was mostly attributed to combustion sources such as vehicle exhaust, heating, cooking and industrial emissions, low wind speeds and high relative humidity (RH), which were favorable for pollutant accumulation and formation of secondary pollutants. By chemical mass balance, it was estimated that about 89.1% of the PM2.5 mass concentrations were explained by carbonaceous species, secondary particles, crustal matters, sea salt and trace elements. Organic material was the largest contributor, accounting for about 32.7% of the total PM2.5 mass concentrations. SO4^2-, NO3^-, Cl^- and NH4^+ were four major ions, accounting for 16.6%, 11.5%, 4.7% and 6,0%, respectively, of the total mass of PM2.5.
出处 《Particuology》 SCIE EI CAS CSCD 2011年第3期215-221,共7页 颗粒学报(英文版)
基金 supported by National Natural Science Foundation of China (Grant No. 20677030) Tianjin Science and Technology Development Commission (Grant No. 06YFSYSF02900)
关键词 PM2.5 Water-soluble ions Organic carbon (OC) Elemental carbon (EC) Crustal matter PM2.5 Water-soluble ions Organic carbon (OC) Elemental carbon (EC) Crustal matter
  • 相关文献

二级参考文献3

共引文献34

同被引文献603

引证文献61

二级引证文献819

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部