期刊文献+

Web用户访问模式挖掘系统框架模型研究

Research on Architecture Model of Web User Access Patterns Mining System
下载PDF
导出
摘要 Web用户访问模式挖掘技术可以从服务器、浏览器端的日志记录中自动发现用户的访问偏好、兴趣和趋势等信息,目前已经成为Web挖掘领域的一个研究热点。文章首先给出Web访问模式挖掘系统的一般框架模型,然后介绍了框架模型中主要组成部分的工作原理,在此基础上,对Web访问模式挖掘系统中的一些关键技术的最新研究进展状况作了阐述和分析,其中包括数据采集、数据预处理、模式发现、用户可视化界面等,最后分析了未来该领域的研究重点作了展望。 Web user access patterns mining technology, currently a research hotspot in the field of web mining, is able to discover automatically such knowledge as the user access preference, interests and trends from the log records of the web server and browser sides. This paper starts with an introduction to the general architecture model of web user access patterns mining system, which is followed by a description on the working principle of the main components of this model. After that the paper elaborates and analyzes recent progress in some key technologies. Among them are data acquisition, data preprocessing, pattern discovery and visual user interface. The paper concludes with some prospects for the future research priorities in this field.
作者 朱志国
出处 《中国科技资源导刊》 CSSCI 2011年第3期62-67,共6页 China Science & Technology Resources Review
基金 国家自然科学基金项目“人机协同思维中隐性知识共享管理方法研究”(70671016).
关键词 WEB挖掘 WEB访问模式挖掘 数据预处理 模式发现 可视化 Web mining, Web access patterns mining, data preprocessing, patterns discovery, visualization
  • 相关文献

参考文献21

  • 1Sergey Brin, Rajeev Motwani. What Can You Do with a Web in Your Pocket[C]//Bulletin of the IEEE Com- puter Society Technical Committee on Data Engineer- ing. USA: Institute of Electrical & Electronics Engineer, 2002: 42-54.
  • 2Robert C, Bamshad M, Jaideep S. Web Mining: In- formation and Pattern Discovery on the World Wide Web[C]. IEEE International Conference on Tools with Artificial Intelligence. USA: IEEE Press, 2006:558-567.
  • 3Robert Cooley, Tan Pangning, Jaideep Srivastava. Dis- covery of Interesting Usage Patterns from Web Data [M]. Germany: Springer-Verlag, 2000.
  • 4Spiliopoulou M, Faulstich L C. WUM: A Tool for Web Utilization Analysis[C]. EDBT Workshop WebDB'02, Verlagia, Spain. Germany: Springer, 2002:184-193.
  • 5Ed H Chi, Rosien A, Jeffrey H. Intelligent Discov- ery and Analysis of Web User Traffc Composition[C]. WEBKDD 2002-Mining Web Data for Discovering Usage Patterns and Profiles, 4th International Workshop, Edmonton, Canada. Germany: Springer, 2002: 1-16.
  • 6Robert Cooley, Barnshad Mobasher, Jaideep Srivastava. Data Preparation for Mining World Wide Web Browsing Pattems[J].The Journal of Knowledge and Information Systems, 1999,1(1):45-52.
  • 7Shahabi C, Zarkesh A, Adibi J, et al. Knowledge Dis- covery from Users Web-page Navigation [C]//Pro- ceedings of the IEEE RIDE 97 Work Shop. USA: Insti- tute of Electrical & Electronics Engineer,1997:204-210.
  • 8Luotonen A. The Common Log File Format [EB/OL]. [2010-10-15]. http://www.w3.org/pub/www/.
  • 9Hu M, Liu B. Mining and Summarizing Customer Reviews[C]//Proceedings of the 10th ACM SICKDD International Conference on Knowledge Discovery And Data Mining. New York: ACM Press, 2004:168-177.
  • 10Jindal N, Liu B. Review Spare Detection[C]//Proceed- ings of the 16th International Conference on World Wide Web. New York: ACM Press, 2007:1189-1190.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部