期刊文献+

基于有限元法的螺旋锥齿轮啮合刚度计算 被引量:83

Spiral Bevel Gear Meshing Stiffness Calculations Based on the Finite Element Method
下载PDF
导出
摘要 螺旋锥齿轮啮合刚度计算是其动力学分析的基础,螺旋锥齿轮动力学分析中多用正弦或余弦级数对轮齿刚度曲线进行近似处理,进而影响动力学分析计算的精度。基于螺旋锥齿轮加载接触有限元分析原理,研究螺旋锥齿轮啮合刚度计算方法,给出使用有限元软件计算螺旋锥齿轮刚度的关键技术及前处理方法,应用有限元分析软件ABAQUS构建一对五齿螺旋锥齿轮模型并计算出法向接触力和综合弹性变形量,得到单齿啮合刚度和多齿综合啮合刚度,分析不同载荷对刚度曲线的影响,结果表明载荷的变化会对刚度曲线的幅值和周期产生较大的影响,在计算刚度曲线时需考虑载荷对重合度以及接触位置的影响,通过计算直齿轮刚度并和已有文献作对比验证了该方法的正确性,研究工作为螺旋锥齿轮动力学分析提供了基础条件。 The calculation of spiral bevel gear meshing stiffness is the foundation of dynamic analysis.An approximate sine or cosine series are applied for dynamic analysis,which influences the computational accuracy.Based on the theory of finite element analysis for spiral bevel gear with loaded contact,a computational method of spiral bevel gear meshing stiffness is developed,and the key technologies and pre-processing methods are given.A spiral bevel gear model with five teeth is constructed using ABAQUS software.The normal contact force and integrated elastic deformation are computed,and the meshing stiffness of single and multiple teeth are achieved considering the influence of difference loads.Computing results show that the loads have a major effect on the meshing stiffness amplitude and period,and that impacts of the loads on contact ratio and the contacting position need to be considered for the calculation of meshing stiffness.Comparing the results of the development calculation method with existing literatures for involutes spur meshing stiffness,the correctness of the meshing stiffness calculation method is verified,which lays the foundation of dynamic analysis for spiral bevel gear.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2011年第11期23-29,共7页 Journal of Mechanical Engineering
基金 国家重点基础研究发展计划(973计划 2011CB706800) 国家自然科学基金(50875263) 中南大学研究生创新论文选题(1343-74335000013)资助项目
关键词 螺旋锥齿轮 加载接触分析 啮合刚度 有限元法 Spiral bevel gear Loaded tooth contact analysis Tooth stiffness Finite element method
  • 相关文献

参考文献10

  • 1梅沢清彦.ほすぱ歯车の负荷がみ合い试验(第1报,たおみの近似式)[J].日本機械学會論文集,1972,38(308):896-904.
  • 2卜忠红,刘更,吴立言.斜齿轮啮合刚度变化规律研究[J].航空动力学报,2010,25(4):957-962. 被引量:35
  • 3石照耀,康焱,林家春.基于齿轮副整体误差的齿轮动力学模型及其动态特性[J].机械工程学报,2010,46(17):55-61. 被引量:57
  • 4GOSSELIN C, GAGNON P, CLOUTIER L. Accurate tooth stiffness of spiral bevel gear teeth by the finite strip method [J]. ASME Journal of Mechanical Design, 1998, 120: 599-605.
  • 5MENNEM R C. Parametrically excited vibrations in spiral bevel geared systems[D].West Lafayette:Purdue University, 2004.
  • 6FAKHER C, TAHAR F, MOHAMED H. Analytical modelling of spur gear tooth crack and influence on gear mesh stiffness[J]. European Journal of Mechanics A/Solids, 2009(28): 461-468.
  • 7FAYDOR L. Litvin gear geometry and applied theory [M]. Cambridge: Cambridge University Press, 2004.
  • 8KUANG J H, YANG Y T. An estimate of mesh stiffness and load sharing ratio of a spur gear pair [C]// Proceedings of the ASME Journal of 12th International Power Transmission and Gearing Conference. Saottsdale, Arizona, 1992, DE-43-1: 1-9.
  • 9JOHNSON K L. Contact mechanics [M]. Cambridge: Cambridge University Press, 1985.
  • 10邓效忠,范明,杨宏斌.螺旋锥齿轮的重合度与承载量的关系[J].中国机械工程,2001,12(8):878-880. 被引量:19

二级参考文献33

  • 1王建军,李其汉,李润方.齿轮系统非线性振动研究进展[J].力学进展,2005,35(1):37-51. 被引量:82
  • 2石照耀,唐为军.齿轮整体误差测量系统的重构[J].机械传动,2007,31(1):1-3. 被引量:4
  • 3Theodossiades S, Natsiavas S. Nonlinear dynamics of gear pair systems with periodic stiffness and backlash[J]. Journal of Sound and Vibration,2000,229(2):287-310.
  • 4JIA Shengxiang, Howard I. Comparison of localized spelling and crack damage from dynamic modeling of spur gear vibrations[J]. Mechanical Systems and Signal Processing, 2006,20 :332-349.
  • 5LIN J, Parker R G. Planetary gear parametric instability caused by mesh stiffness variation[J]. Journal of Sound and Vibration, 2002,249 : 129- 145.
  • 6Kiracofe D R, Parker R G. Structured vibration modes of general compound planetary gear systems[J].Journal of Vibration and Acoustics,2007,129(1) : 1-16.
  • 7Umezawa K, Deflection and moments due to a concentrated load on a rack-shaped cantilever plate with finite width for gears[J]. Bulletin of JSME, 1972,15(79) : 116-130.
  • 8Umezawa K. The meshing test on helical gear under load transmissions: 1st report--The approximate formula for deflections of gear tooth[J]. Bulletin of JSME, 1972, 15(90):1632-1639.
  • 9Umezawa K. The meshing test on helical gear under load trartsmissions; 2nd report--The approximate formula for bending-moment distribution of gear tooth[J]. Bulletin of JSME, 1973,16(92):407-413.
  • 10Umezawa K. The meshing test on helical gear under load transmissions:3rd report The static behaviours of driven gear[J].Bulletin of JSME, 1974,17(112) : 1348-1355.

共引文献107

同被引文献522

引证文献83

二级引证文献343

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部