期刊文献+

GaInNAs/GaAs量子阱太阳电池模型建立与计算 被引量:2

Modeling and Calculation of GaInNAs/GaAs Quantum-well Solar Cells
下载PDF
导出
摘要 对第三代太阳电池的InGaP/GaAs双叠层模型结构进行了理论性改进,提出了将GaInNAs/GaAs量子阱结构生长于子电池GaAs的空间电荷区的模型,并对其子电池的吸收效率与量子效率进行了模拟计算,分析了此模型对提高叠层太阳电池的整体光电转换效率的可行性。 A better energy conversion efficiency of GaAsP/GaAs dual-junction solar sell is achieved by improving the structure of traditional third-generation solar cells,for which,a model of growing GaInNAs/GaAs quantumwell in the space charge of GaAs sub-battery is proposed.And the absorption coefficient and internal quantum efficiency of the sub-battery are simulated.Finally,the feasibility of this model for the enhancement of photoelectric conversion efficiency of tandem solar cells is analyzed.
出处 《半导体光电》 CAS CSCD 北大核心 2011年第3期348-351,共4页 Semiconductor Optoelectronics
基金 广东省自然科学基金项目(10151063101000048)
关键词 太阳电池 GaInNAs/GaAs 量子阱 吸收效率 IQE solar sells GaInNAs/GaAs quantum well IQE absorption coefficient
  • 相关文献

参考文献6

  • 1Friedman D J. NREL photovoltaie program review [C]// Proe. AIP Conference, 1993,306 : 521.
  • 2周勋,罗木昌,赵红,周勇,刘万清,邹泽亚.GaAs基Ⅲ-Ⅴ族多结太阳电池技术研究进展[J].半导体光电,2009,30(5):639-646. 被引量:8
  • 3Dumitras Gh, Riechert H. Determination of band offsets in semiconductor quantum well structures using surface photovoltage[J]. Appl. Phys. ,2003,94:3955- 3959.
  • 4Hall D J, Hosea T J C, strained InGaAs/InGaAsP Button C C. Analysis of single quatumn wells using room temperature photoreflectanee[J]. Semieond. Sei Teehnol. , 1998,13 : 302-309.
  • 5Xin H P,Kavanagh K L,Zhu Z Q,et al. Observation of quantum dot-like behavior of GaInNAs in GaInNAs/ GaAs quantum wells[J]. Appl. Phys. Lett. , 1999,74 (16) .-231-243.
  • 6Hall D J, Hosea T J C, Button C C. Analysis of strained InGaAs/InGaAsP single quatum wells using room temperature photoreflectance[J]. Semicond. Sci. Technol. , 1998,13 : 302-309.

二级参考文献34

  • 1黄子乾,李肖,潘彬,张岚.用于GaInP/GaAs双结叠层太阳电池的MOVPE外延材料[J].太阳能学报,2006,27(5):433-435. 被引量:3
  • 2陈文浚.III-V族化合物半导体整体多结级连太阳电池——光伏技术的新突破[J].电源技术,2007,31(2):97-102. 被引量:6
  • 3Green M A, Emery K, King D L, et al. Solar cell efficiency tables (Version 24) [J]. Prog. Photovolt: Res. Appl. , 2004,12(5) :365-372.
  • 4King RR, Law D C, Edmondson K M, et al. 40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells[J]. Appl. Phys. Lett., 2007, 90 (18):183516.
  • 5Jackson E D. Proposing increased conversion efficiency by employing stacked, multijunction cells[C]//Trans. of the Conf. on the Use of Solar Energy, 1955: 122.
  • 6Kurtz S R,Faine P J, Olson J M. Modeling of twojunction, series-connected tandem solar cells using topcell thickness as an adjustable parameter[J]. J. Appl. Phys., 1990,68(4):1890.
  • 7GeiszJ F, Kurtz S, Wanlass M W, et al. Highefficiency GaInP/GaAs/InGaAs triple-junction solar cells grown inverted with a metamorphic bottom junction[J]. Appl. Phys. Lett. , 2007, 91 (2).. 023502.
  • 8OlsonJ M, Ahrenkiel R K, Dunlavy D J, et al. Ultralow recombination velocity at Ga0.5In0.5P/GaAs heterointerfaces[J]. Appl. Phys. Lett., 1989, 55 (12) : 1208-1210.
  • 9Yamaguchi M,Vargas-Aburto C, Taylor S J, et al. Radiation-resistance of InGaP solar cells[C]//IEEE 25th Photovoltaic Specialists Conference, 1996: 163- 166.
  • 10Madelung O. Semiconductors: Group Ⅳ Elements and Ⅲ - Ⅴ Compounds[M]. Berlin : Springer-Verlag, 1991.

共引文献7

同被引文献8

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部