期刊文献+

分布参数为随机变量情况下可靠性灵敏度求解的方向抽样法 被引量:6

Directional Sampling Based Reliability Sensitivity Analysis with Random Distribution Parameter
下载PDF
导出
摘要 针对工程中随机变量分布参数存在不确定性的情况,定义分布参数为区间内的随机变量情况下的可靠性灵敏度,并建立可靠性灵敏度求解的方向抽样法。在所建立的方向抽样法中,Monte Carlo法被用来模拟分布参数的样本,而对于每个分布参数样本点,方向抽样法被用来进行可靠性灵敏度分析,最后在整个分布参数空间上对可靠性灵敏度积分,以获得分布参数为区间内随机变量情况下的可靠性灵敏度的估计值,并对所推导的可靠性灵敏度估计值进行方差分析。通过算例比较方向抽样法与双重Monte Carlo数字模拟法,分析结果验证了方向抽样方法是可行和有效的。 For random variable involving uncertain distribution parameter commonly existing in engineering,the uncertain distribution parameter is assumed as uniformly distributing in an interval,on which a new reliability sensitivity is defined and its solution is given by use of the directional sampling method.In the given directional sampling method for solving the new reliability sensitivity,Monte Carlo method is used to simulate the samples of the interval distribution parameter,and the directional sampling is employed to analyze the reliability sensitivity corresponding to the distribution parameter sample.Finally,the estimations of the reliability sensitivity can be calculated by integral on the whole distribution parameter space,the variances of the reliability sensitivity estimations by directional sampling method are derived approximately.Directional sampling based method is compared with double Monte Carlo based method by illustrations,and the results show that the directional sampling method is feasible and effective.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2011年第12期156-162,共7页 Journal of Mechanical Engineering
基金 国家自然科学基金(10572117 50875213) 新世纪优秀人才支持计划(NCET-05-0868) 航空科学基金(2007ZA53012) 国家高技术研究发展计划(863计划 2007AA04Z401)资助项目
关键词 可靠性灵敏度 方向抽样 方差分析 双重Monte Carlo Reliability sensitivity Directional sampling Variance analysis Double Monte Carlo
  • 相关文献

参考文献10

  • 1MELCHERS R E, AHAMMED M. Gradient estimation for applied Monte Carlo analysis[J]. Reliability Engineering and System Safety, 2002, 78(3). 283-288.
  • 2AU S K, BECK J L. A new adaptive important sampling scheme for reliability calculations[J]. Structural Safety, 1999, 21(2). 139-163.
  • 3JINSUO N, ELLINGWOOD B R. Directional methods for structural reliability analysis[J]. Structural Safety, 2000, 22: 233-249.
  • 4ZIO E. Reliability engineering: Old problems and new challenges[J]. Reliability Engineering and System Safety, 2009, 94(2): 125-141.
  • 5DITLEVSEN O, MELCHERS R E, GLUVER H. General multi-dimensional probability integration by directional simulation[J]. Computers & Structures, 1990, 36(2): 355-368.
  • 6WU Y T. Computational methods for efficient structural reliability and reliability sensitivity analysis[J]. AIAA, 1994, 32(8): 1717-1723.
  • 7张良欣,胡云昌.基于方向向量模拟技术的结构系统可靠性评价[J].固体力学学报,2001,22(3):247-255. 被引量:4
  • 8丁伟.截尾正态分布理论及其在机械工程上的应用[J].重庆职业技术学院学报,2008,17(1):145-148. 被引量:4
  • 9LIU Huibin, CHEN Wei. Probability sensitivity analysis method for design under uncertainty[C]//The lOth AIAA/ ISSMO Multidisciplinary Analysis and Optimization Conference. 30 August-1 September 2004, Albany, New York, 2004: 1-15.
  • 10刘成立,吕震宙,徐有良.粉末冶金涡轮盘裂纹扩展寿命可靠性敏度分析[J].稀有金属材料与工程,2006,35(5):761-765. 被引量:5

二级参考文献20

共引文献10

同被引文献87

引证文献6

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部