期刊文献+

基于扩散张量成像的脑组织各向异性电导率计算模型的研究综述 被引量:3

A Survey on Brain Tissues Anisotropic Conductivity Model Based on Diffusion Tensor Imaging
原文传递
导出
摘要 脑组织电导率不仅对脑电源分析起着至关重要的作用,而且也是及时发现脑组织发生功能性病变的重要依据之一。扩散张量成像是一种无损伤功能性成像新技术,具有很高的空间分辨率。基于扩散张量成像的脑组织电导率计算是近年来的一项重要研究课题。本文综述了已有脑组织各向异性电导率的计算模型,主要包括张量特征值线性模型、电场力-粘力平衡模型、王约束与体积约束模型、体积分数模型、电化学模型等,并综合分析了其优缺点。最后展望了该课题的研究发展趋势。 The conductivity of brain tissues is not only very important to analysis of EEG / MEG,but also one of the key factors of finding brain functional changes timely.Diffusion tensor imaging is a non-injury functional imaging technology,with high spatial resolution.The conductivity imaging of brain inner tissues is an important research topic.The existing anisotropic conductivity models of brain inner tissues were summarized,including tensor linear eigenvalues model,electric-viscous force balance model,Wang-constraint model,volume-constraint model,volume fraction model,and electrochemical model.And their advantages and disadvantages were discussed detailedly.At last,the development trend of this subject was stated.
出处 《生物物理学报》 CAS CSCD 北大核心 2011年第6期491-499,共9页 Acta Biophysica Sinica
基金 国家自然科学基金项目(50577055) 美国国家卫生研究所基金项目(RO1EB007920) 美国国家科学基金项目(0411898) 杭州电子科技大学科研启动基金项目(KYS045610015)~~
关键词 扩散张量成像 白质 各向异性电导率 Diffusion tensor imaging White matter Anisotropic conductivity
  • 相关文献

参考文献27

  • 1Arkhtari M, Byrant HC, Mamelak AN, Flynn ER. Conductivities of three-layer live human skull. Brain Topography, 2002, 14(3): 151-167.
  • 2Hoekema R, Wieneke GH, Leijten FSS, van Veelen CWM, van Rijen PC, Huiskamp GJM, Ansems J, van Huffelen AC. Measurement of the conductivity of skull, temporarily removed during epilepsy surgery. Brain Topography, 2003, 16(1): 29-38.
  • 3Seo JK, Pyo HC, Park C, Kwon O, Eung JW. Image reconstruction of anisotropic conductivity tensor distribution in MREIT: Computer simulation study. Phys Med Biol, 2004, 49(18): 4371-4382.
  • 4Geddes LA, Baker LE. The specific resistance of biological material- A compendium of data for the biomedical engineer and physiologist. Med Biol Eng, 1967, 5(3): 271-293.
  • 5Haueisen J, Tuch DS, Ramon C, Schimpfd PH, Wedeenb V J, Georgee JS, Belliveau JW. The influence of brain tissue anisotropy on human EEG and MEG. Neurolmage, 2002, 15(1): 159-166.
  • 6Tuch DS, Wedeen V J, Dale AM, George JS, Belliveau JW. Conductivity mapping of biological tissue using diffusionMRI. Ann N Y Acad Sci, 1999, 888:314-316.
  • 7Sekino M, Yamaguchi K, Iriguchi N, Ueno S. Conductivity tensor imaging of the brain using diffusion-weighted magnetic resonance imaging. J Appl Phys, 2003, 93(10): 6730-6732.
  • 8Wang K, Zhu S, Mueller BA, Mueller BA, Lim KO, Liu ZM, He B. A new method to derive white matter conductivity from diffusion tensor MRI. IEEE Trans Biomed Eng, 2008, 55(10): 2418-2416.
  • 9Wolters CH, Anwander A, Tricoche X, Weinstein D, Koch MA, MacLeod RS. Influence of tissue conductivity anisotropy on EEG/MEG field and return current computation in a realistic head model: A simulation and visualization study using high-resolution finite element modeling. Neurolmage, 2006, 30(3): 813-826.
  • 10Shimony JS, McKinstry RC, Akbudak E, Aronovitz JA, Snyder AZ, Lori NF, Cull TS, Conturo TE. Quantitative diffusion-tensor anisotropy brain MR imaging: Normative human data and anatomic analysis. Radiology, 1999, 212(3): 770-784.

二级参考文献15

  • 1Basser PJ, Mattiello J, Lebihan D, et al. Estimation of the effective self-dffusion tensor from the NMR spin echo [J]. Journal of Magnetic Resonance, 1994, 103 : 247 - 254.
  • 2Beaulieu C. The basis of anisotropic water diffusion in the nervous system-a technical review [J]. NMR in Biomedicine, 2002, 15: 435 - 455.
  • 3Norris DG. The effects of microscopic tissue parameters on the diffusion weighted magnetic resonance imaging experiment [ J ]. NMR in Biomedicine, 2001, 14: 77- 93.
  • 4Mori S, Zhang Jiangyang. Principles of diffusion tensor imaging and its applications to basic neuroscienee research [J]. Neuron, 2006, 51 : 527 - 539.
  • 5Pierpaoli C, Jezzard P, Basser PJ, et al. Diffusion tensor MR imaging of the human brain [J]. Radiology, 1996, 201:637 - 648.
  • 6Stanisz GJ. Diffusion MR in biological systems: tissue compartments and exchange [ J]. Israel Journal of Chemistry, 2003, 43 : 33 - 44.
  • 7Wang Kun, Zhu Shanan, He B, et al. A new method to derive white matter conductivity from diffusion tensor MRI [J]. TBME, 2008, 55(10) :2481 - 2486.
  • 8Dronne A, Boissel JP, Grenier E. A mathematical model of ion movements in grey matter during a stroke [ J]. Journal of Theoretical Biology, 2006, 240: 599-615.
  • 9Sekino M, Yamaguchi K, Iriguchi N, et al. Conductivity tensor imaging of the brain using diffusion-weighted magnetic resonance imaging [J]. Journal of Applied Physics, 2003, 93(10): 6370- 6373.
  • 10Tuch DS, Wedeen V J, Dale AM, et al. Conductivity tensor mapping of the human brain using diffusion tensor MRI [J]. Proc Natl Acad Sci USA, 2001, 98(20):11697- 11701.

共引文献1

同被引文献47

  • 1陈功,易红,倪中华.基于逆向工程的医学器官有限元建模方法[J].机械工程学报,2006,42(1):139-144. 被引量:11
  • 2Daniel Gullmar, Jens Haueisen, Michael Eiseh, et al. Influ- ence of anisotropy conductivity on EEG source reconstruction : investigations in a rabbit model [ J ]. IEEE Transactions On Biomedical Engineering, 2006, 53(9): 1841-1850.
  • 3Haueisen J, Tuch DS, Ramon C, et al. The influence of brain tissue anisotropy on human EEG and MEG[J]. NeuroImage, 2002. 15(1), 159-166.
  • 4Basser PJ, Mattiello J, Le Bihan D. MR Diffusion tensor spectroscopy and imaging[ J]. Biophysical Journal, 1994, 66 ( 1 ) : 259-267.
  • 5Tuch DS,Wedeen VJ, Dale AM, et al. Conductivity mapping of biological tissue using diffusion MRI [ J ]. Ann N Y Acad Sci, 1999, 888: 314-316.
  • 6Tuch DS,Wedeen V J, Dale AM, George JS, Belliveau JW. Conductivity tensor mapping of the human brain using diffu- sion tensor MR! [ J ]. Proc Nat Acad Sci USA, 2001, 98 (20) : 11697-11701.
  • 7Wolters CH, Anwander A, Tricoche X, et al. Influence of tissue conductivity anisotropy on EEG/MEG field and return current computation in a realistic head model: A simulation and visualization study using high-resolution finite element modeling [ J ]. NeuroImage, 2006, 30 ( 3 ) : 813-826.
  • 8Wang Kun,Zhu S, Mueller BA, et al. A new method to de- rive white matter conductivity from diffusion tensor MRI [ J ]. IEEE Trans Biomed Eng, 2008. 55 (10) : 2418-2416.
  • 9Voronel A, Veliyulin E, Sh V. Machavariani. Fractional stokes-einstein law for Ionic transport in liquids[ J]. Physical Review Letters, 1993, 80(12) : 2630-2633.
  • 10Xinying Lu. Application of the Nemst-Einstein equation to concrete[ J]. Cement and Concrete Research, 1997, 27 (2) : 293 -302.

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部