期刊文献+

利用分枝杆菌的重组工程系统将TAP标签敲入耻垢分枝杆菌的方法研究 被引量:2

Knocking TAP tag in the genome of Mycobacterium smegmatis mc2155 by the recombineering system in Mycobacterium
下载PDF
导出
摘要 目的利用pJV53质粒编码的分枝杆菌重组工程系统将TAP标签敲入耻垢分枝杆菌基因组。方法将pJV53质粒转入耻垢分枝杆菌,使其表达重组蛋白,制备带有重组蛋白的感受态细胞;从质粒pBS1479中扩增出tap片段,从质粒pSMT3中扩增hyg片段,从耻垢分枝杆菌基因组中分别扩增出aasf基因及其5′端非编码区片段AASF5和aasf基因下游3′端非编码区片段AASF3,利用重叠PCR将以上4个片段拼接在一起,形成最终的敲入片段A5THA3;将构建好的敲入片段转入感受态细胞,使其重组入耻垢分枝杆菌基因组中,PCR和DNA测序鉴定敲入效果。结果重叠PCR技术得到全长为3 200 bp的敲入片段,PCR与DNA测序结果证实带有TAP标签的A5THA3片段已成功敲入耻垢分枝杆菌基因组中。结论成功将TAP标签敲入耻垢分枝杆菌基因组,为下一步进行目的基因功能研究奠定了基础。 In order to knock the TAP tag in the genome of Mycobacterium smegmatis (M. smegmatis) mc^2 155 using the pJV53 plasmid encoding recombineering system, pJV53 plasmid was transformed into M. smegmatis mc^2 155 to make the M. smegmatis mc^2 155 express recombinant proteins and prepare the electrocompetent cells. The tap gene was amplified from pBS1479 plasmid and the hyg gene was amplified from pSMT3 plasmid. The aasf (anti-anti-sigma factor)gene with AASF5 fragment (5′-noneoding region of aasf gene) and AASF3 fragment (3′-noncoding region of aasf gene) were amplified from the genome of M. smegmatis mc^2 155. These four fragments were spliced together to form the knock-in fragment ASTHA3 by overlap PCR. The constructed fragment was transformed into the electroeompetent cells to make it recombinant into the genome of M. smegmatis mc^2 155. The recombinant effect was verified by PCR and DNA sequencing. The knock-in fragment of 3200bp was gotten by overlap PCR. It was confirmed by PCR and DNA sequencing that the A5THA3 fragment with TAP tag was knocked into the genome of M. smegmatis mc^2 155 correctly. The TAP tag was successfully knocked into the genome of M. smegmatis mc^2 155 and paved the way for further study of the functions of some target genes.
出处 《中国人兽共患病学报》 CAS CSCD 北大核心 2011年第6期539-542,546,共5页 Chinese Journal of Zoonoses
基金 国家"十一五"重大传染病防治科技重大专项"结核病传播模式研究"(2008ZX100/03-010-02)资助
关键词 重组工程系统 pJV53质粒 串联亲和纯化标签 敲入片段 重叠PCR 耻垢分枝杆菌 reeombineering system pJV53 plasmid tandem affinity purification (TAP)tag knock-in fragment overlap PCR Mycobacterium smegmatis
  • 相关文献

参考文献10

  • 1van Kessel J C, Hatfull G F. Recombineering in Mycobacterium tuberculosis[J]. Nat Methods, 2007, 4(2) : 147-152.
  • 2Rigaut G, Shevchenko A, Rutz B, et al. A generic protein purl fication method for protein complex characterization and pro teome exploration [J]. Nature bioteehnology, 1999, 17(10) 1030-1032.
  • 3Puig O, Caspary F, Rigaut G, et al. The tandem affinity purifi- cation (TAP) method: a general procedure of protein complex purification [J]. Methods, 2001, 24(3): 218-229.
  • 4Parish T, Stoker N G. Electroporation of mycobacteria[M]. Methods in Molecular Biology: Mycobacteria Protocols, 1998,101: 129-144.
  • 5Friedman D I, Court D L. Bacteriophage lambdaalive and well and still doing its thing [J]. Current opinion in microbiology, 2001, 4(2) : 201-207.
  • 6Poteete A R. What makes the bacteriophage lambda Red system useful for genetic engineering.- molecular mechanism and biologi cal function[J]. FEMS microbiology letters, 2001, 201 ( 1 ) 9-14.
  • 7Angrand P O, Daigle N, van der Hoeven F, et al. Simplified generation of targeting constructs using ET recombination[J]. Nucleic acids research, 1999, 27(17): e16.
  • 8Yu D, Ellis H M, Lee E C, et al. An efficient recombination system for chromosome engineering in Eseheriehia coil [J]. Pro- ceedings of the National Academy of Sciences of the United States cff America. 2000. 97(11), 5978-5983.
  • 9Murphy K C, Campellone K G,Poteete A R. PCR mediated gene replacement in Escherichia coli[J]. Gene, 2000, 246(1-2) : 321- 330.
  • 10Court D L, Sawitzke J A,Thomason L C. Genetic engineering using homologous recombination [J]. Annual review of genet- ics, 2002, 36: 361-388.

同被引文献22

  • 1程春明,曹以诚.基因沉默技术在结核病防治研究中的应用[J].生命的化学,2005,25(6):493-495. 被引量:1
  • 2Dye C, Williams BG. The population dynamics and control of tuberculosis. Science, 2010, 328(5980): 856- 861.
  • 3Boshoff HI, Barry CE. Tuberculosis - metabolism and respiration in the absence of growth. Nature Reviews Microbiology, 2005, 3 ( 1 ) : 70-80.
  • 4Munoz-Elias EJ, McKinney JD. Carbon metabolism of intracellular bacteria. Celhular Microbiology, 2006, 8 (1) : 10-22.
  • 5Munoz-Elias E J, McKinney JD. Mycobacterium tuberculosis isocitrate lyases 1 and 2 are jointly required for in vivo growth and virulence. Nature Medicine, 2005, 11(6) : 638-644.
  • 6Gould TA, van de Langemheen H, Munoz-Elias EJ, McKinney JD, Sacchettini JC. Dual role of isocitrate lyase 1 in the giyoxylate and methylcitrate cycles in Mycobacterium tuberculosis. Molecular Microbiology, 2006, 61(4): 940-947.
  • 7Munoz-Elias EJ, Upton AM, Cherian J, McKinney JD. Role of the methylcitrate cycle in Mycobacterium tuberculosis metabolism, intracellular growth, and virulence. Molecular Microbiology, 2006, 60 ( 5 ) : 1109- 1122.
  • 8Upton AM, McKinney JD. Role of the methylcitrate cycle in propionate metabolism and detoxification in Mycobacterium Smegmatis. Microbiology, 2007, 153 ( Pt 12) : 3973-3982.
  • 9Marrero J, Rhee KY, Schnappinger D, Pethe K, Ehrt S. Gluconeogenic carbon flow of tricarboxylic acid cycle intermediates is critical for Mycobacterium tuberculosis to establish and maintain infection. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(21): 9819-9824.
  • 10Sassetti CM, Rubin EJ. Genetic requirements for mycobacterial survival during infection. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(22) : 12959-12994.

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部