期刊文献+

Regions of Applicability of Aubry-Mather Theory for Non-convex Hamiltonian

Regions of Applicability of Aubry-Mather Theory for Non-convex Hamiltonian
原文传递
导出
摘要 Herman constructed an autonomous system of two degrees of freedom which says that in non-convex situations, oscillations do happen and Aubry-Mather Theory cannot apply (see the results due to W. F. Chen in 1992). In this paper, it is shown that although the orbits could visit a region far away from the initial point in phase space, they can only exist in some fixed regions in I = (I1 , I2 ) plane. Moreover, Aubry-Mather Theory can be applied outside the regions.
出处 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2011年第4期605-614,共10页 数学年刊(B辑英文版)
基金 Project Supported by the Graduate Student Research Fellowship of Jiangsu Province of China (No.CX10B_002Z)
关键词 Twist map Aubry-Mather Theory Non-convex Hamiltonian 哈密顿理论 非凸 适用性 自治系统 自由度 相空间 初始点
  • 相关文献

参考文献21

  • 1Arnold, V., Mathematical Methods of Classical Mechanics, Graduate Texts in Mathematics, 60, Springer- Verlag, New York, 1989.
  • 2Aubry, S., Theory of the devil's staircase, Seminar on the Riemann Problem and Complete Integrability, Lect. Notes Math., 925, Springer-Verlag, Berlin, 1978-1979.
  • 3Aubry, S., The twist map, the extended Frenkel-Kontorova model and the devil's staircase, Physica D, 7, 1983, 240-258.
  • 4Aubry, S. and LeDaeron, P., The discrete Frenkel-Kontorova model and its extensions I: exact results for the ground states, Phys. D, 8, 1983, 381-422.
  • 5Bangert, V., Mather sets for twist maps and geodesics on tori, Dynamics Reported, 1, Teubner, Stuttgart, 1988, 1-45.
  • 6Bernstein, D., Birkhoff periodic orbits for twist maps with graph intersection property, Ergodic. Theory Dyn. Syst., 5, 1985, 531-532.
  • 7Bernstein, D. and Katok, A., Birkhoff periodic orbits for small perturbations of completely integrable Hamiltonian systems with convex Hamiltonians, Invet. Math., 88, 1987, 225-241.
  • 8Birkhoff, G. and Lewis, D., On the periodic motions near a given periodic motion of a dynamical systems, Ann. Math., 12, 1933, 117-133.
  • 9Bourgain, J. and Kaloshin, V., On diffusion in high dimensional Hamiltonian systems, J. Funct. Anal., 229, 2005, 1-61.
  • 10Chen, W. F., Birkhoff periodic orbits for small perturbations of completely integrable Hamiltonian systems with nondegenerate Hessian, Twist Mappings and Their Applications, Springer-Verlag, New York, 1992.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部