期刊文献+

粒子群优化人体星形骨架特征矢量量化 被引量:1

Human Star Skeleton Feature Vector Quantization Using PSO
下载PDF
导出
摘要 实现了人体星形骨架特征提取,并利用粒子群优化骨架特征矢量的量化。星形骨架通过连接人体质心点到人体四肢及头部端点实现,是一种快速骨架提取技术。把质心点和端点连接,人体星型骨架可以用一个五维矢量Si表示,Si∈Rn,Rn是星型骨架特征空间。时序图像中的人体动作可以用星型骨架序列表示的特征矢量序列S代替。最后用粒子群优化S的特征量化过程,生成特征码本G。 The paper introduces how to extract the human star skeleton and by using the particle swarm to optimize the skeleton characteristic vector quantization.Star skeleton,generated by connecting human center-of-mass point to the human limbs and head endpoint,is a kind of fast skeleton extraction techniques.Connecting center-of-mass point with endpoint,human skeleton could be represented by five dimensional vector Si,Si∈Rn,Rn is the star skeleton feature space.Star skeleton sequence can take the place of the timing sequences of human actions.Finally,we generated the codebook G by using particle swarm optimization quantification process.
机构地区 昆明理工大学
出处 《微处理机》 2011年第3期75-78,共4页 Microprocessors
基金 "基于多媒体技术的人体康复过程自动识别系统研究" 国务院春晖计划项目(KKQA200303006)
关键词 粒子群 星型骨架 运动跟踪 PSO Star skeleton Motion track
  • 相关文献

参考文献6

  • 1陈凤东,洪炳镕.基于动态阈值背景差分算法的目标检测方法[J].哈尔滨工业大学学报,2005,37(7):883-884. 被引量:43
  • 2Hiroyuki Ukida, Seiji Kaji. Human Motion Capture System Using Color Markers and Silhouette [ J ]. IMTC 206 - In- strumentation and Measurement Technology Conference Sorrento, Italy April 2006 : 24 - 27.
  • 3Hsuan - Sheng Chen, Hua - Tsung Chen. Human Action Recognition Using Star Skeleton [ J ]. VSSN 06, October 27,2006, Santa Barbara, Califomia, USA : 508 - 515.
  • 4James Kennedy, Russell Eberhart. Particle Swarm Optimi- zation[ J].0 - 7805 - 2768 - 3/95 1995 IEEE : 1941 - 1948.
  • 5Qian Chen, Jiangang Yang,Jin Gou. Image Compression Method Lrsilg Improved PSO Vector Quantizaion [ J ]. Springer- Verlag Berlin Heidelberg 2005:490- 495.
  • 6王亮,胡卫明,谭铁牛.人运动的视觉分析综述[J].计算机学报,2002,25(3):225-237. 被引量:276

二级参考文献110

  • 1徐杰,施鹏飞.基于相位一致与区域生长的自然彩色图像分割[J].电子学报,2004,32(7):1203-1205. 被引量:12
  • 2[25]Kohle M, Merkl D, Kastner J. Clinical gait analysis by neural networks: Issues and experiences. In: Proc IEEE Symposium on Computer-Based Medical Systems, Maribor, Slovenia, 1997. 138-143
  • 3[26]Meyer D, Denzler J, Niemann H. Model based extraction of articulated objects in image sequences for gait analysis. In: Proc IEEE International Conference on Image Processing, Santa Barbara, California 1997. 78-81
  • 4[27]McKenna S et al. Tracking groups of people. Computer Vision and Image Understanding, 2000, 80(1):42-56
  • 5[28]Karmann K, Brandt A. Moving object recognition using an adaptive background memory. In: Cappellini V ed. Time-varying Image Processing and Moving Object Recognition. 2. Elsevier, Amsterdam, The Netherlands, 1990
  • 6[29]Kilger M. A shadow handler in a video-based real-time traffic monitoring system. In: Proc IEEE Workshop on Applications of Computer Vision, Palm Springs, CA, 1992.1060-1066
  • 7[30]Stauffer C, Grimson W. Adaptive background mixture models for real-time tracking. In: Proc IEEE Conference on Computer Vision and Pattern Recognition, Fort Collins, Colorado, 1999, 2:246-252
  • 8[31]Wren C, Azarbayejani A, Darrell T, Pentland A. Pfinder: Real-time tracking of the human body. IEEE Trans on Pattern Analysis and Machine Intelligence, 1997, 19(7):780-785
  • 9[32]Arseneau S, Cooperstock J. Real-time image segmentation for action recognition. In: Proc IEEE Pacific Rim Conference on Communications, Computers and Signal Processing, Victoria, Canada, 1999. 86-89
  • 10[33]Sun H, Feng T, Tan T. Robust extraction of moving objects from image sequences. In: Proc the Fourth Asian Conference on Computer Vision, Taiwan, 2000.961-964

共引文献317

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部