摘要
以平面R2 上的距离d 为基础,结合水平λ的重要性函数g(λ),在Fuzzy 数空间E1 上建立了LGpd-度量D[pg],证明了(E1,D[pg])为度量空间的充分必要条件是g(λ)在[0,1]上几乎处处不为零。进而讨论了当d 是由R2 上的范数确定的距离时,(E1,D[pg])的基本性质及D[pg]的完备性问题。
In this paper,by applying the distance of plane R 2 and level importance function g(λ),we establish the LG pd metric D [pg] on fuzzy number space E 1,and show that (E 1,D [pg] ) is a metric space if and only if g(λ)≠0 almost everywhere on [0,1].In addition,the basic properties and the completeness of D [pg] are discussed when the distance is determined by the norm of plane.
出处
《河北科技大学学报》
CAS
1999年第4期17-21,共5页
Journal of Hebei University of Science and Technology