摘要
设0→BjEπA→0是有单位元C*-代数E的一个扩张,其中A是有单位元纯无限单的C*-代数,B是E的闭理想.当B是E的本性理想并且同时是单的、可分的而且具有实秩零及性质(PC)时,证明了K_0(E)={[p]| p是E/B中的投影};当B是稳定C*-代数时,证明了对任意紧的Hausdorff空间X,有 (C(X,E))/ _0(C(X,E))≌K_1(C(X,E)).
Let 0→B E A→0 be a short exact sequence of the unital C*-algebras, where A is a unital simple purely infinite C*-algebra,B is a closed ideal of the unital C*- algebra E.If B is an essential ideal of E and B is also simple,separable with RR(B) = 0 and(PC),then K_0(E) = {[p]| p is a projection in E / B};if B is a stable C~*-algebra,then (C(X,E))/_0(C(X,E))≌K_1(C(X,E)) for any compact Hausdorff space X.
出处
《数学年刊(A辑)》
CSCD
北大核心
2011年第3期277-282,共6页
Chinese Annals of Mathematics
基金
国家自然科学基金(No.10771069)
上海市重点学科建设基金(No.B407)资助的项目
关键词
K-群
纯无限单C~*-代数
实秩零
K-groups
Simple purely infinite C*-algebra
Real rank zero