期刊文献+

序列[n^c]上多维除数函数的和

The Sum of Multidimensional Divisor Function on a Sequence of Type[n^c]
下载PDF
导出
摘要 设[θ]表示θ的整数部分,k≥2,dk(n)为除数函数.证明了当实数c满足1<c<3849/3334时,∑d_k([n^c])具有渐近公式,从而改进了吕广世和翟文广的结果(1<c<495/433),而且当k=2时,n≤x实数c的范围可以改进到1<c<391/335. Let[θ]be the integral part ofθand k≥2,d_k(n) denote the divisor function. In this paper it is proved that d_k([n^c]) has an asymptotic formula when 1c3849/3334, which improves L(u|¨) Guangshi and Zhai Wenguang's result 1c495/433.Moreover,if k = 2, then the range of c can be enlarged to 1c391/335.
作者 李英杰
出处 《数学年刊(A辑)》 CSCD 北大核心 2011年第3期355-364,共10页 Chinese Annals of Mathematics
基金 上海高校选拔培养优秀青年教师科研专项基金(No.ssc08017) 上海海洋大学博士科研启动基金资助的项目
关键词 除数函数 渐近公式 指数和 指数对 Divisor function Asymptotic formula Exponential sum Exponent pair
  • 相关文献

参考文献18

  • 1Piatetski-Shapiro I I. On the distribution of prime numbers in sequences of the form [f(n)] [J]. Math Sb, 1953, 33:559-566.
  • 2Kolesnik G A. On the distribution of prime numbers in sequences of the form [nc] [J]. Mat Zametki, 1972, 2:117-128.
  • 3Heath-Brown D R. The Pjateckii-Sapiro prime number theorem [J]. J Number Theory, 1983, 16:242-266.
  • 4Kolesnik G A. Primes of the form [nc] [J]. Pacific J Math, 1985, 118:437-447.
  • 5Liu H Q, Rivat J. On the Piatetski-Shapiro prime number theorem [J]. Bull London Math Soc, 1992, 24:143-147.
  • 6Rivat J. Autour d'un theoreme de Piatetski-Shapiro [D]. Paris: Universite de Paris Sud, 1992.
  • 7Rivat J, Sargos P. Nombres premiers de la forme [nc] [J]. Canad J Math, 2001, 53:414- 433.
  • 8Baker R C, Harman G, Rivat J. Primes of the form [nc] [J]. J Number Theory, 1995, 50:261-277.
  • 9Jia C H. On the Piatetski-Shapiro prime number theorem (Ⅱ) [J]. Science in China Set A, 1993, 36:913-926.
  • 10Stux I E. Distribution of squarefree integers in non-linear sequences [J]. Pacific J Math, 1975, 59:577-584.

二级参考文献6

  • 1[1]Ivic' A. The Riemann Zeta function [M]. New York: John Wiley & Sons Inc., 1985.
  • 2[2]Heath-Brown D R. The Pjatetski-Shapiro prime number theorem [J]. Journal of Number Theory, 1983, 16:242-266.
  • 3[3]Baker R C, Harman G and Rivat J. Primes of the form [nc] [J]. Journal of Number Theory, 1995, 50:261-277.
  • 4[4]Arkhipov G I, Soliba Kh M and Chubarikov V N. On the sum of values of a multidimensional function of divisors on a sequence of type [nc] [J]. Vetnik Moskov. Univ. Ser. I. Mat. Mekh, 1999, 2: 28-35.
  • 5[5]Jia Chaohua. The distribution of square-full integers [J]. Sci. Sin, Ser A, 1992, 8: 812-827.
  • 6[6]Sargos P and Wu Jie. Multiple exponential sums with monomials and their applications in number theory [J]. Acta. Math. Hungar., 2000, 87: 333-354.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部