期刊文献+

基于快速的混合高斯模型的运动目标检测算法 被引量:2

A Moving Object Detection Algorithm Based on Gaussian Mixture Model
下载PDF
导出
摘要 针对传统高斯模型实时性差的问题,该文提出了一种快速的背景更新策略。首先对彩色图像建立混合高斯模型,根据场景中象素点的稳定性来调整模型参数的更新速度;其次利用混合颜色空间的阴影检测算法消除前景图像的运动阴影;最后对该文方法进行了验证性实验,结果表明提出的运动目标检测方法有效、实时性好、对光照有较强鲁棒性。 This paper proposes a fast background updating strategy for Gaussian mixture model to improve its efficiency.First,establishing Gaussian mixture model for color images,and then adjust the updating speed of model parameters according to the stability of each pixels in frames;Second,using the shadow detection algorithm based on mixture color space to eliminate the shadow of the foreground;Finally,several experiments were did and the results show that the proposed method for motion objective detection is effective,real-time and strongly robust for light.
出处 《杭州电子科技大学学报(自然科学版)》 2011年第2期58-61,共4页 Journal of Hangzhou Dianzi University:Natural Sciences
基金 浙江省科技计划资助项目(C03015-4)
关键词 混合高斯模型 运动目标检测 阴影抑制 Gaussian mixture model motion detection shadow suppression
  • 相关文献

参考文献6

  • 1王亮,胡卫明,谭铁牛.人运动的视觉分析综述[J].计算机学报,2002,25(3):225-237. 被引量:276
  • 2王典,程咏梅,杨涛,潘泉,赵春晖.基于混合高斯模型的运动阴影抑制算法[J].计算机应用,2006,26(5):1021-1023. 被引量:20
  • 3Ja N J ,Ja N A. Displacement measurement and its application in inter-frame image coding[ J]. IEEE Trans Communica- tion, 1981,29 (12) : 1 799 - 1 808.
  • 4Pratia, Mikic I, Tr Ived Imm, et al. Detecting moving shadows: algorithms and evaluation [ J]. IEEE transactions on pat- tern analysis and machine intelligence, 2003, 25 (7): 918 -923.
  • 5Martel-Brisson N, Zaccarin A. Moving cast shadow detection form a Gaussian mixture shadow model[ A ]. CVPR 2005 [ C]. IEEE Computer Society Conference,2005.
  • 6Ahmed Elgammal, Ramani Duraiswami, David Hartwood. Background and foreground modeling using nonparametric ker- nel density estimation for visual surveillance[J]. Proceeding of the IEEE, 2002, 90(7) :1 151 - 1 164.

二级参考文献114

  • 1[25]Kohle M, Merkl D, Kastner J. Clinical gait analysis by neural networks: Issues and experiences. In: Proc IEEE Symposium on Computer-Based Medical Systems, Maribor, Slovenia, 1997. 138-143
  • 2[26]Meyer D, Denzler J, Niemann H. Model based extraction of articulated objects in image sequences for gait analysis. In: Proc IEEE International Conference on Image Processing, Santa Barbara, California 1997. 78-81
  • 3[27]McKenna S et al. Tracking groups of people. Computer Vision and Image Understanding, 2000, 80(1):42-56
  • 4[28]Karmann K, Brandt A. Moving object recognition using an adaptive background memory. In: Cappellini V ed. Time-varying Image Processing and Moving Object Recognition. 2. Elsevier, Amsterdam, The Netherlands, 1990
  • 5[29]Kilger M. A shadow handler in a video-based real-time traffic monitoring system. In: Proc IEEE Workshop on Applications of Computer Vision, Palm Springs, CA, 1992.1060-1066
  • 6[30]Stauffer C, Grimson W. Adaptive background mixture models for real-time tracking. In: Proc IEEE Conference on Computer Vision and Pattern Recognition, Fort Collins, Colorado, 1999, 2:246-252
  • 7[31]Wren C, Azarbayejani A, Darrell T, Pentland A. Pfinder: Real-time tracking of the human body. IEEE Trans on Pattern Analysis and Machine Intelligence, 1997, 19(7):780-785
  • 8[32]Arseneau S, Cooperstock J. Real-time image segmentation for action recognition. In: Proc IEEE Pacific Rim Conference on Communications, Computers and Signal Processing, Victoria, Canada, 1999. 86-89
  • 9[33]Sun H, Feng T, Tan T. Robust extraction of moving objects from image sequences. In: Proc the Fourth Asian Conference on Computer Vision, Taiwan, 2000.961-964
  • 10[34]Lipton A, Fujiyoshi H, Patil R. Moving target classification and tracking from real-time video. In: Proc IEEE Workshop on Applications of Computer Vision, Princeton, NJ, 1998. 8-14

共引文献292

同被引文献23

  • 1Friedman N, Russell S. Image Segmentation in Video Sequences: A Probabilistic Approach[C]//Proc. of the 13th Conference on Uncertainty in Artificial Intelligence.Providence, USA: [s. n.], 1997.
  • 2Stauffer C, Grimson W E L. Adaptive Background Mixture Models for Real-time Tracking[C]//Proc. of IEEE Conference on Computer Vision and Pattern Recognition. Fort Collins, USA: [s. n.], 1999.
  • 3Grimson W, Stauffer C, Romano R Tracking to Classify and Monitor Site[C]//Proc. of IEEE Conference on and Pattern Recognition. Washington D Using Adaptive Activities in a Computer Vision C., USA: IEEE Computer Society, 1998.
  • 4Shyang L D. Effective Gaussian Mixture Learning[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(5): 827-832.
  • 5Zivkovic Z. Recursive Unsupervised Learning of Finite Mixture Models[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(5): 651-656.
  • 6Sun Yunda, Li Ming, Wu Wei, et al. Background Model Initialization in Moving Object Detection with Shadow Elimination[C]//Proc. of the 7th International Conference on Signal Processing. Beijing, China: [s. n.]; 2004.
  • 7Zivkovic Z. Improved Adaptive Gaussian Mixture Model for Background Subtraction[C]//Proc. of International Conference on Pattern Recognition. Washington D. C., USA: IEEE Computer Society, 2004.
  • 8Zhang R,Zhang S Z,Yu S Y.Moving objects detection method based on brightness distortion and chromaticity distortion[J].IEEE Transactions on Consumer Electronics,2007,53(3):1177-1185.
  • 9Papenberg N,Bruhn A,Brox T.Highly accurate optic flow computation with theoretically justified warping[J].International Journal of Computer Vision,2006,(2):141-158.
  • 10Stein F.Efficient computation of optical flow using the census transform[C]//DAGM 2004,LNCS 3175.Berlin:Springer,2004:79-86.

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部