摘要
针对传统高斯模型实时性差的问题,该文提出了一种快速的背景更新策略。首先对彩色图像建立混合高斯模型,根据场景中象素点的稳定性来调整模型参数的更新速度;其次利用混合颜色空间的阴影检测算法消除前景图像的运动阴影;最后对该文方法进行了验证性实验,结果表明提出的运动目标检测方法有效、实时性好、对光照有较强鲁棒性。
This paper proposes a fast background updating strategy for Gaussian mixture model to improve its efficiency.First,establishing Gaussian mixture model for color images,and then adjust the updating speed of model parameters according to the stability of each pixels in frames;Second,using the shadow detection algorithm based on mixture color space to eliminate the shadow of the foreground;Finally,several experiments were did and the results show that the proposed method for motion objective detection is effective,real-time and strongly robust for light.
出处
《杭州电子科技大学学报(自然科学版)》
2011年第2期58-61,共4页
Journal of Hangzhou Dianzi University:Natural Sciences
基金
浙江省科技计划资助项目(C03015-4)
关键词
混合高斯模型
运动目标检测
阴影抑制
Gaussian mixture model
motion detection
shadow suppression