期刊文献+

汇率变动的分数阶福克——普朗克方程

The Application of Inverse-stable Subordinate in Foreign Exchange Market
下载PDF
导出
摘要 该文主要运用拉普拉斯变换、拉普拉斯逆变换,以R.Friench模型为基础,推导出随机过程{ΔX(Sα(t))}的概率密度函数所满足的分数阶福克—普朗克方程。并且指出,所得到的分数阶福克—普朗克方程要比古典的福克—普朗克方程优越,更适合描述外汇市场中外汇的变化规律,从而为下一步推导非古典的期权定价方程奠定了理论基础。 In this paper,we mainly use the method of Laplace transform,Laplace inverse transform.Based on the model(1),we give the fractional Fokker-Planck equation which satisfies the probability density function of the stochastic process {ΔX(Sα(t))}.Pointing out,the fractional Fokker-Planck equation is more excellent than the classical Fokker-Planck equation,for it describes the change of foreign exchange rate more rationally.Just based on this,we can derive the option price equation which is not classical.
出处 《杭州电子科技大学学报(自然科学版)》 2011年第3期82-84,共3页 Journal of Hangzhou Dianzi University:Natural Sciences
基金 浙江省自然科学基金资助项目(Y7080457)
关键词 逆子扩散算子 分数阶福克—普朗克方程 分数阶导数 α-stable subordinator fractional Fokker-Planck equation fractional derivative
  • 相关文献

参考文献8

  • 1Mogens Bladt, Tina Hviid Rydberg. An actuarialapproach to option pricing under the physical measrue and withoutmarket assuinptions [ J ]. Insurance: Mathematics and Economics, 1998, (22) :65 - 73.
  • 2Black F, Scholes M S. The pricing of options andcorporate liabilities [J]. Political Economy ,1973, (33) : 637 -59.
  • 3Merton R C. Theory of rational option pricing [ J]. Political Economy, 1973, (12) :141 - 183.
  • 4Magdziar M. Black-Scholes formula in subdiffusive regime [ J]. Stat Phys,2009, (12) : 553 -564.
  • 5Wu - sun, Xi-bin. The independent analysis in Foreign Exchange Market [ J ]. Journal of Harbin Institute of Technology, 2006, (22) : 602 - 674.
  • 6Fridrich R. How to Quantify Determistic and Random Influence on the Statistics of the Foreign Exchange Market [ J ]. Physical Review Letters,2000, (34): 24-27.
  • 7Risken H . The Fokker-Planck Equation: Methods of Solution and Applications [ M ]. Springer-Verlag: Berlin Heidelberg New York Tokyo, 1984:67 -71.
  • 8Magdziar M, Weron A, Weron K. Fractional Fokker-Planck dynamics: Stochastic representation and computer simulation [J]. Phys Rev E ,2007,(26) : 67 -69.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部