期刊文献+

基于核方法的二维线性判决分析的人脸识别算法 被引量:4

Kernel method in face recognition based on 2DLDA
下载PDF
导出
摘要 针对基于二维线性判决分析的人脸识别算法中缺少非线性判决信息的问题,提出了一种改进的基于核方法的二维线性判决分析的人脸识别算法。实验结果表明,改进后的算法相对原算法具有更好的识别效果。在此基础上研究了在使用多项式核函数时本文算法的性能,得出了在选用低次数多项式核函数时识别率较高的结论。 The face recognition method based on two dimensional discriminant algorithm lacks the use of nonlinear feature. To overcome this shortcoming, a two dimensional diseriminant analysis algorithm based on kernel method is proposed for face recognition. Test results show that the proposed algorithm performs better than the original one. Further research on polynomial kernel functions shows that the lower degree polynomials receive higher recognition rate.
出处 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2011年第4期1167-1170,共4页 Journal of Jilin University:Engineering and Technology Edition
基金 国家自然科学基金项目(60672034) 中央高校基本科研业务费专项资金项目
关键词 通信技术 人脸识别 二维线性判别 核方法 多项式核函数 communication face recognition two dimension discriminant analysis kernel method polynomial kernel function
  • 相关文献

参考文献11

  • 1Turk M A, Pentland A P. Face recognition using eigenfaces[C] // Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1991 : 586-591.
  • 2BeIhumeur J P, Hespanha D J Kriegman. Eigenfaces vs fisherfaces class-specific linear projection [J] IEEE Trans PAMI, 1997,19(7): 711-720.
  • 3Yang J, Yang J Y. From image vector to rnatirx: a straightforward image projection technique-lM- PCA vs PCA[J]. Pattern Recognition, 2002, 351 1997- 1999.
  • 4Yang J, Zhang D, Yang J Y. Two-dimensional di- scriminant transform for face recognition[J]. Patt- ern Recognition 2005, 38(7)..1125-1129.
  • 5Ye J P, Janardan R, Li Q. Two dimensional linear diseriminant analysis [C]//Proe International Con- ferenee on Neural Information Processing Systems, 2004:1569-1576.
  • 6Zhang D Q, Chen S C, Zhou Z H. Two-dimen sional non negative matrix factorization for face representa- tion and recognition[C]//LNCS, 2005, 3723.. 350- 363.
  • 7Zhang D Q, Zhou Z H. (2D) 2PCA: 2-directio-nal 2-dimensional PCA for efficient face representation and recognition [J]. Neurocomputing, 2005, 69 : 224-231.
  • 8Scholkopf B, Smola A, Muller K R. Nolinear corn ponent analysis as a kernel eigenvalue problem[J]. Neural Computation, 1998, 10: 1299-1319.
  • 9Mike S, Ratsch G, Weston J, et al. Fisher discrimi nant analysis with kernel[J]. In IEEE Neural Net works for Signal Processing Workshop, 1999:41-48.
  • 10Yang M H, Ahuja N, Kriegman D. Face recogni tion using kernel eigenfaces[C]// Proceedings of the IEEE International Conference on Image Process- ing,2000:37 40.

同被引文献45

  • 1张敏,于剑.基于划分的模糊聚类算法[J].软件学报,2004,15(6):858-868. 被引量:176
  • 2陈小光,封举富.Gabor滤波器的快速实现[J].自动化学报,2007,33(5):456-461. 被引量:21
  • 3Jafri R,Arabnia H R.A Survey of Face Recognition Techniques[J].Journal of Information Processing Systems,2009,5(2):41-68.
  • 4WANG Lin,LI Yong-ping,WANG Chen-bo,et al.2D Gaborface Representation Method for Face Recognition withEnsemble and Multichannel Model[J].Image and Vision Computing,2008,26(6):820-828.
  • 5WANG Xiao-ming,HUANG Chang,FANG Xiao-ying,et al.2DPCA vs 2DLDA Face Recognition UsingTwo-Dimensional Method[C]//International Conference on Artificial Intelligence and Computational Intelligence.Shanghai:IEEE Press,2009:357-360.
  • 6Duda R O, Hart P E, Stork D G. Pattem Classification[M]. New York, USA: John Wiley & Sons, 2000.
  • 7Shawe-Taylor J, Cristianini N. Kernel Methods for Pattern Analy- sis[M]. Cambridge, UK: Cambridge University Press, 2004.
  • 8Yan Shuicheng, Xu Dong, Zhang Benyu, et al. Graph Embedding and Extensions: A General Framework for Dimensionality Reduction[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2007, 29(1 ): 40-51.
  • 9He Xiaofei, Niyogi E Locality Preserving Projections[C]//Proc. of. NIPS'03. British Columbia, Canada: [s. n.], 2003.
  • 10Suykens J A K, Vandewalle J. Least Squares Support Vector Ma- chine Classifiers[J]. Neural Processing Letters, 1999, 9(3): 293-300.

引证文献4

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部