期刊文献+

欧拉变分法基本方程不变性思想及其探源 被引量:2

Euler′s thought on the invariance of the fundamental equation of the calculus of variations and its origin
下载PDF
导出
摘要 目的廓清欧拉变分法基本方程不变性思想及其产生的历史根源。方法历史分析和文献考证。结果欧拉基本方程不变性思想与18世纪分析学研究对象变革的大背景密切相关。随着分析学逐渐脱离几何传统,抽象的公式或作为解析表达式的函数逐步取代几何曲线,成为分析学研究的基本对象,欧拉基本方程不变性思想是当时正在发生的这种变革的真实写照。结论欧拉基本方程不变性思想,是18世纪分析学研究对象变革的产物,为其后拉格朗日在纯分析基础上创立形式的变分法以及更进一步拓展变分法的力学应用,提供了认识上的先导。 Aim To explore Euler's thought on the invariance of the fundamental equation of the calculus of variations and its background. Methods Historic analysis and literatural review. Results Euler's thought on the invariance of the fundamental equation of the calculus of variations was closely connected with the change of the subject of analysis in the 18th century. With the separation of analysis subject from geometry, the formula involving letters and numbers or the functions as analytical expressions came the fundamental concept of analysis subject. The gradually replaced the geometric curves and eventually bethought of Euler reflected the change at that time. Conclusion Euler's thought of the invariance of the fundamental equation was the result of the change of the subject of analysis in the 18th century. Following this congnitive guidance, Lagrange created his formal method of variation based on pure analysis and further expanded the employments of the calculus of variations into dynamical problems.
作者 贾小勇
出处 《西北大学学报(自然科学版)》 CAS CSCD 北大核心 2011年第3期537-542,共6页 Journal of Northwest University(Natural Science Edition)
基金 国家自然科学基金资助项目(11001217) 重庆文理学院2010年度第二批特色项目和2010年度教学改革基金资助项目(100109) 重庆市教委科学技术研究基金资助项目(KJ111208)
关键词 欧拉(Leonard EULER 1707—1783) 变分法 基本方程的不变性 Leonard Euler(1707--1783) the calculus of variations invariance of the fundamental equation
  • 相关文献

参考文献10

  • 1EULER L. Methodus Inveniendi Curvas Lineas Maximi Minimive Proprietate Gaudentes Sive Solution Problemat- ic Isoperimetrici Lafissimo Sensu Accepti [ M ]. Lau- sanne : M. - M Bousquet, 1744.
  • 2GOLDSTINE H H. A History of the Calculus of Varia- tions From the 17th Through the 19th Century [ M]. Ber- lin, New York: Springer-Verlag, 1980.
  • 3曲安京.中国数学史研究范式的转换[J].中国科技史杂志,2005,26(1):50-58. 被引量:59
  • 4BOYER C B. The History of the Calculus and its Concep- tual Development[M]. New York: Dover, 1969.
  • 5BOSH J M. Differentials, higher-order differentials and the derivative in the Leibnizian calculus [ J ]. Archive for History of Exact Sciences, 1974,14 : 1-90.
  • 6FRASER C. The calculus as algebraic analysis: some ob- servations on mathematical analysis in the 18-th century [J]. Archive for History of Exact Sciences, 1989,39: 317-335.
  • 7爱德华CH.微积分发展史[M].张鸿林,译.北京:北京出版社,1987.
  • 8VICTORJK.数学史通史[M].李文林,译.北京:高等教育出版社,2004:442.
  • 9范广辉,贾小勇.拉格朗日微积分的代数视角及其评价[J].西北大学学报(自然科学版),2010,40(3):556-559. 被引量:1
  • 10贾小勇,李跃武.变分法的一次变革:从欧拉到拉格朗日的形式化改造[J].自然科学史研究,2009,28(3):312-325. 被引量:3

二级参考文献36

  • 1曲安京.中国数学史研究范式的转换[J].中国科技史杂志,2005,26(1):50-58. 被引量:59
  • 2易照华.拉格朗日[A].吴文俊.世界著名数学家传记[M].上册.北京:科学出版社,1995.706-708.
  • 3Euler L. Methodus Inveniendi Curvas Lineas Maximi Minimive Proprietate Gaudentes sive Solution Problematis Isoperimetrici Latissimo Sensu Accepti [ A ]. Caratheodory C (eds). Leonhardi Euleri Opera Omnia [ C ]. Set. I, Vol. 24. Zurich : OreU Fussli, 1952.
  • 4Caratheodory C. The Beginning of Research in the Calculus of Variations [J]. Orisis, 1937, 3:224--240.
  • 5Goldstine H H. A History of the Calculus of Variations from the 17th through the 19th Century[ M]. Berlin\New York : Spfinger-Verlag, 1980.
  • 6Lagrange J L. Letter to Euler 12 August 1755 [A]. Serret J A(eds). Oeuvres de Lagrange[ C]. Vol. XIV. Paris: Gauthier-Villars, 1892. 138-144.
  • 7Euler L. Letter to Lagrange 6 September 1755[A]. Juskevic A P, Taton R(eds). Leordardi Euleri Opera Omnia[C]. Ser. IVA, Vol. 5. Basel: Birkhauser, 1980. 375--378.
  • 8Euler L. Elementa Calculi Variationum[ A ]. Carath6odory C (eds). Leonhardi Euleri Opera Omnia [ C ]. Ser. I, Vol. 25. Zurich: Orell Fussli,1952. 141--176.
  • 9Euler L. Analytica Explicatio Maximorum et M inimorum[ A ]. Caratheodory C (eds). Leonhardi Euleri Opera Omnia [ C ]. Ser. I, Vol. 25. Zurich: Orell Fussli, 1952. 177--207.
  • 10Woodhouse R. A Treatise on Isoperimetrical Problems and the Calculus of Variations [ M ]. Cambridge U. K. : Cambridge University Press, 1810.

共引文献60

同被引文献8

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部