期刊文献+

求解广义Black-Scholes方程的指数型差分法

Exponential Time Difference Scheme for a Generalized Black-Scholes Equation
下载PDF
导出
摘要 文中给出了求解广义Black-Scholes的稳定的、二阶收敛的数值方法。首先在分片一致网格上应用中心差分格式对Black-Scholes方程关于空间变量离散,然后对半离散问题应用指数时间积分法离散。此数值策略对于任意波动率和任意利率都是稳定的,并且是关于标的资产价格二阶收敛的。数值实验证实了理论结果的正确性。 In this paper we present a numerical method for a generalized Black-Scholes equation.The numerical method utilizes a central difference scheme on a piecewise uniform mesh with respect to the spatial variable combined with an exponential time integration scheme.Our scheme is stable for arbitrary volatility and arbitrary interest rate,and is second-order convergent.Numerical results support the theoretical results.
机构地区 浙江万里学院
出处 《浙江万里学院学报》 2011年第4期86-91,共6页 Journal of Zhejiang Wanli University
基金 2010年浙江省大学生科技创新活动计划(编号:2010R419012)
关键词 BLACK-SCHOLES方程 指数时间积分法 中心差分 分片一致网格 Black-Scholes equation exponential time integration central difference scheme piecewise uniform mesh
  • 相关文献

参考文献20

  • 1Black F, Scholes M S. The pricing of options and corporate liabilities [J]. J. Political Economy, 1973(81) : 637-654.
  • 2Cho C, Kim T and Kwon Y. Estimation of local volatilities in a generalized Black-Scholes model [J]. Appl. Math. Comput., 2005(162) : 1135-1149.
  • 3Courtadon G. A more accurate finite difference approximation for the valuation of options[J]. J. Fin. Quant. Anal., 1982(17): 697-703.
  • 4Cox S M, Matthews P C. Exponential time differencing for stiff systems, J. Comput. Phys[J]. 2002(176): 430-455.
  • 5Dehghan M. Numerical techniques for a parabolic equation subject to an overspecified boundary condition [J]. Appl. Math. Comput., 2002 (132) : 299-313.
  • 6Giles M, Carter R. Convergence analysis of Crank-Nicolson and Rannacher time-marching [J]. J. Comput. Finance, 2006, 9 (4): 89- 112.
  • 7Gourlay A R, Morris J L. The extrapolation of first-order methods for parabolic partial differential equations II [J]. SIAM J. Numer. Anal., 1980(17): 641-655.
  • 8Ladyzenskaja O A, Solonnikov V A and Ural'ceva N N. Linear and quasilinear equations of parabolic type[M]. Amer. Math. Soc. Transl., 23, Providence, RI, 1968.
  • 9Lambert J D. Numerical methods for ordinary differential systems: The initial-value problem[M]. Wiley, Chichester, UK, 1991.
  • 10Kangro R, Nicolaides R. Far field boundary conditions for Black-Scholes equations [J]. SIAM J. Numer. Anal., 2000(38) : 1357-1368.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部