期刊文献+

抗野值自适应Kalman滤波在无人机测风数据处理中的应用 被引量:4

Adaptive Kalman Filterwith Restraining Outliers in Wind Measurement Data Process with UAV
下载PDF
导出
摘要 针对无人机风场测量值含连续野值较多,且其噪声统计先验知识不足的问题,运用一种抗野值自适应Kalman滤波算法来提高其测风精度。在对模糊自适应Kalman滤波算法分析的基础上,该算法将一个压缩影响函数加权于滤波方程的新息上,根据新息的方差和均值变化自适应调整修正权值,使修正后的新息序列能够保持原有性质。相关分析结果表明,该算法能有效地克服较大野值和成片野值对滤波的不利影响,保证滤波精度,适用于无人机风场测量。 The wind velocity data with UAV contains more continuous outliers, and the prior distribution of noise statistics is known insufficiently. To improve the precision of wind velocity, an adaptive Kalman filter algorithm with restraining outliers presented in this paper. A compressibility function integrated to new information based on analyzing the Kalman Filter algorithm. According to the of the variance and mean value of new information, the weighting factor adjusted adaptively to ensure the initial properties. Simulation and analysis indicate that the algorithm can reduce the influence of outliers, and ensure the precision. The algorithm can be applied in UAV wind measurement.
出处 《弹箭与制导学报》 CSCD 北大核心 2011年第3期237-240,共4页 Journal of Projectiles,Rockets,Missiles and Guidance
关键词 无人机 KALMAN滤波 抗野值自适应Kalman滤波 野值 新息 aircraft vehicle(UAV) Kalman filter adaptive Kalman filter with restraining outliers outliers new information
  • 相关文献

参考文献8

二级参考文献22

共引文献139

同被引文献36

引证文献4

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部