期刊文献+

基于光纤-镜面干涉腔的光纤加速度计 被引量:6

Fiber optic accelerometer based on fiber-mirror interference cavity
下载PDF
导出
摘要 设计、研制了一种基于光纤-镜面干涉腔的光纤加速度计。介绍了该加速度计的传感原理及弹性结构设计,并对其性能进行了实验测试。该加速度计用固定于圆网状弹性结构上的硅微反射镜与处理过的光纤端面构成光纤-镜面干涉腔来产生相位差随外界加速度改变的光干涉信号;采用相位生成载波技术通过对干涉信号的调制和解调实现对相位差的精确测定。应用工程软件Cosmosworks(Solidworks)对该加速度计弹性结构的灵敏度进行了理论分析,并与样机测试比较。结果表明,该光纤加速度计的灵敏度为63.2rad/g,共振频率为160Hz,分辨率为4μg而动态范围接近108,结果与理论分析符合得较好。该加速度计不仅结构简单,还集成了多维加速度计的优势。 An optical fiber accelerometer was designed based on a fiber-mirror interference cavity.The sensing principle and elastic structure of the accelerometer were introduced and its performance was measured.A silicon micro-mirror mounted on a mesh spring elastic structure and a fiber facet were used to form a fiber-mirror cavity to generate optical interference signals as a function of acceleration.A Phase Generated Carrier(PGC) technology was adopted to modulate the interference signals to obtain phase difference signals with high resolution.Finally,the strain analysis of elastic structure was performed by Cosmosworks(Solidworks) to calculate the sensitivity.The performance measurement of prototype shows that the accelerometer can offer a sensitivity of 63.2 rad/g in the resonance frequency of 160 Hz and a resolution of 4 μg with a dynamic range near 108.Furthermore,the accelerometer is structure simple and easy to be intergrated and multi-dimensioned.
出处 《光学精密工程》 EI CAS CSCD 北大核心 2011年第6期1179-1184,共6页 Optics and Precision Engineering
基金 国家自然科学基金资助项目(No.60577025)
关键词 光纤加速度计 相位生成载波技术 灵敏度 分辨率 fiber optic accelerometer Phase Generated Carrier(PGC) sensitivity resolution
  • 相关文献

参考文献17

二级参考文献91

共引文献154

同被引文献57

  • 1刘琨,张立旺,江俊峰,马鹏飞,孙振世,翁凌锋,刘铁根.基于无人机视频联动的分布式光纤传感周界安防系统[J].光电子.激光,2019,30(12):1244-1251. 被引量:5
  • 2柏林厚,廖延彪,张敏,赖淑蓉.干涉型光纤传感器相位生成载波解调方法改进与研究[J].光子学报,2005,34(9):1324-1327. 被引量:44
  • 3罗洪,熊水东,胡永明,倪明.三分量全保偏光纤加速度传感器的研究[J].中国激光,2005,32(10):1382-1386. 被引量:14
  • 4王永杰,李芳,肖浩,张松伟,王锐,刘育梁.盘片式光纤传感器灵敏度计算方法[J].光学学报,2007,27(8):1387-1392. 被引量:11
  • 5Kringlebotn J T. Large scale fibre optic Bragg-grating based ocean bottom seismic cable system for permanent reservoir monitoring[A]. OSAr[C]. 2010, SWA1-2.
  • 6Gaiser J E,Vasconcelos I. Elastic interferometry for ocean bottom cable data:theory and examples[J]. Geophysical Prospecting, 2010,58 (3) : 347-360.
  • 7Brown R J. Acquisition footprints and seafloor coupling in multicomponent OBC seismic data[J]. Geophysics, 2010, 75(1) : Q11-Q20.
  • 8WANG Jian-fei ,LUO Hong, ZHOU Meng, et al. Experimen- tal research of an all-polarization-maintaining optical fib- erVector hydrophone[J]. Journal of Lightwave Technolo- gy, 2012,30(8) : 1178-1184.
  • 9Moro E A,Todd M D, Puckett A. A performance compari- son of transducer designs for interferometric fiber optic accelerometers[A]. SPIE [C], 20]0, 7648: 76480G-1- 6480G-12.
  • 10WANG Yong-jie, XIAO Hao, ZHANG Song-wei, et al. De- sign of a fibre-optic disc accelerometer., theory and ex- periment[J] Measurement Science and Technology, 2007,18(6) :1763-1767.

引证文献6

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部