摘要
在对M-B接触分形模型改进的基础上,根据阿查得粘着磨损理论导出了基于分形参数的粘着磨损模型。根据该模型可知,当分形维数在某一范围时,磨损率随分形维数的减小而迅速增大;而在另一范围内,磨损率随分形维数的增大而增大;当分形维数等于15时,磨损率达到最小值。当分形维数一定时,磨损率随尺度系数。磨损概率常数的增大而增大,随材料性能参数的减小而增大;当其余各影响参数保持一定值时,磨损率随接触面积的增大而增大。
An adhesive wear model based on fractal parameter is derived on the grounds of adhesive wear theory by modifying the M-B fractal contact model. This model shows that the wear rate increases speedily with decrease of fractal dimension in a certain range, and it increases slightly with increase of fractal dimension in another range. The minimum value of the wear rate is obtained when the fractal dimension equals to 1. 5. When the fractual dimension is given, the wear rate is enhanced with the augument of scale factor and wear probability constant, or with the decrease of material property parameters. While giving other parameters, wear rate increases along with the increase of contact area.
出处
《石油大学学报(自然科学版)》
CSCD
1999年第6期50-52,共3页
Journal of the University of Petroleum,China(Edition of Natural Science)
关键词
分形几何
粘着磨损
磨损
模型
分形维数
fractal geometry
adhesive wear
wear model
fractal dimension
wear rate