期刊文献+

基于二阶隐马尔可夫模型的清浊音恢复算法 被引量:1

Voiced/Unvoiced Parameters Recovery Based on Second-Order Hidden Markov Model
下载PDF
导出
摘要 为了解决低速率语音编码中比特受限的问题,提出了一种基于二阶隐马尔可夫模型的清浊音参数恢复算法。该算法采用二阶隐马尔可夫模型,通过归一化的能量参数和LPC倒谱系数估计出序列中的全带清浊音判决和各个子带的清浊音度。解码器实现该算法后,编码器就无需对清浊音参数进行量化传输,从而节约了比特数。实验结果表明,该算法比基于GMM模型的算法能更好地恢复出清浊音信息,全带清浊音误判率减少了5%~20%,合成语音的MOS分比用5 bit的矢量量化(VQ)算法提高了0.03左右,达到了在节约比特数的同时也提高了语音质量的效果。 In order to solve the problem of limited number of bits in low bit rate speech coding, an algorithm using second - order Hidden Markov ModeI(HMM2) to recover the voiced/unvoiced parameters is proposed in this paper. The algorithm uses the normalized energy and linear prediction coding(LPC) coefficients to estimate the full-band V/U classification and the sub-band BPVC value. The algorithm can be implemented in the decoder, saving the bits originally used by V/U parameters and reducing the bit rate of speech coding. Experimental re- suits show that the algorithm proposed can reduce the V/U classification error rate by 5 % - 20 % compared with the GMM algorithm, and improve the mean opinion score(MOS) of the synthesized speech signal by about 0.03 compared with the 5bit vector quantization(VQ), thereby greatly improves the estimation performance of the V/ U parameters.
出处 《电讯技术》 北大核心 2011年第6期56-60,共5页 Telecommunication Engineering
基金 国家自然科学基金资助项目(60572081)~~
关键词 低速率语音编码 二阶隐马尔可夫模型 全带V/U判决 BPVC恢复 low-bit rate speech coding second-order HMM V/U classification BPVC recovery
  • 相关文献

参考文献7

  • 1李哗.低速率语音编码技术与算法研究[D].北京:清华大学,2009.
  • 2Wei X, Dang X, Cui H, et al. Voiced/Unvoiced Classifica- tion Recovery in the Speech Decoder Based on GMM[ C]// Proceedings of ICSP. Beijing: IEEE,2008: 546 - 548.
  • 3McCree V, Barnwell T. A mixed excitation LPC vocoder model for low bit rate speech coding[J]. IEEE Transactions on Speech Audio Processing, 1995, 3(4):242- 250.
  • 4Rabiner L, Juang B H. Fundamentals of Speech Recognition [M]. New Jersey: Prentice- Hall, 1993:321 - 386.
  • 5Ismail Shahin. Using Second- Order Hidden Markov Model to Improve Speaker Identification Recognition Performance under Neutral Condition[C]//Proceedings of the 10th IEEE ICECS. Sharjah, United Arab Emirates : IEEE, 2003 : 124 - 127.
  • 6Jean- Francois Mari, Jean- Paul Haton, Abdelaziz kriouile. Automatic wordrecognition based on second- order hidden Markov models[J]. IEEE Transactions on Speech and Audio Processing, 1997(5) :22 - 25.
  • 7李晔,洪侃,王童,崔慧娟,唐昆.正弦激励线性预测声码器子带清浊音模糊判决[J].清华大学学报(自然科学版),2008,48(7):1101-1103. 被引量:4

二级参考文献6

  • 1MvAulay R J, Quatieri T F. Speech analysis/synthesis- based on a sinusoidal representation[J]. IEEE Trans Acoustic, Speech, Signal Processing, 1986, ASSP-34 : 744 - 754.
  • 2Griffin D W, Lim J S. Multi-band excitation vocoder [J]. IEEE Trans Acoustic, Speech, Signal Processing, 1988, ASSP-36:1223 - 1235.
  • 3Kleijn W B. Encoding speech using prototype waveforms [J]. IEEE Transactions on Speech and Audio Processing, 1993, 1(4): 386-399.
  • 4McCree A, Truong K, George E B, et al. 2.4 kb/s MELP coder candidate for the new U.S. federal standard [C]// Proceedings of ICASSP, IEEE. Atlanta, Georgia: IEEE, 1996: 200- 203.
  • 5李军林.低速率语音编码算法研究[D].北京:清华大学,2004.
  • 6张建伟,贺天宏,李军林,崔慧娟,唐昆.高质量的0.6kb/s声码器算法[J].清华大学学报(自然科学版),2003,43(4):449-452. 被引量:23

共引文献4

同被引文献10

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部