期刊文献+

完全鉴别分析高分辨距离像雷达目标识别

Complete Discriminant Analysis Algorithm for High Resolution Range Profile Radar Target Recognition
下载PDF
导出
摘要 针对雷达目标识别问题,提出了一种完全鉴别分析特征提取方法。首先依据F isher准则导出样本总散度矩阵的零空间不含有鉴别信息的结论,利用这一结论,对类间和类内散度矩阵进行预降维,降低了后续计算的复杂度。然后基于类内散度矩阵零空间与非零空间所包含的鉴别信息分别建立子空间,实现对目标的特征提取。对三类飞机目标实测回波数据的识别结果表明了所提方法的有效性。 Abstraet..A Complete Discriminant Analysis (CDA) algorithm for high resolution range profile radar target recognition is proposed. Firstly, one conclusion that there exists no useful discriminative information in the null space of the total scatter matrix is derived from the Fisher^s criterion, which can be used to reduce the dimensionality of scatter matrices, thus improve the computation efficiency of the following computation. Then it carries out feature extraction based on two discriminant subspaces, which makes full use of the discriminative information in both null-and non-null space of the within-class scatter matrix respectively. Experiments on the measured data are conducted, and the results confirm the effectiveness of the proposed method.
作者 邓莉 刘华林
出处 《火力与指挥控制》 CSCD 北大核心 2011年第6期31-34,共4页 Fire Control & Command Control
基金 国家自然科学基金资助项目(60702070)
关键词 雷达目标识别 高分辨距离像 完全鉴别分析 特征提取 radar target recognition, high resolution range profile, complete diseriminant analysis,feature extraction
  • 相关文献

参考文献8

  • 1Li H J, Yang S H, Using Range Profiles as Feature Vectors to Identify Aerospace Objects [J]. IEEE Trans. on Antennas and Propagation, 1993, 41 (3) : 261-268.
  • 2Novak L M, Owirka G J. Radar Target Identification Using an Eigen-Image Approach [ C ]//Proc. of IEEE International Radar Conference, Atlanta, USA, 1994.
  • 3Zyweck A, Bogner R E. Radar Target Classification of Commercial Aircraft [J]. IEEE Trans. on Aerospace and Electronic Systems, 1996, 32(2): 598-606.
  • 4曾宪贵,黎绍发,左文明.一种变形Fisher判别准则函数及最优判别向量集[J].计算机工程,2005,31(16):19-20. 被引量:6
  • 5Fukunaga K. Introduction to Statistical Pattern Classification [ M ] San Diego, California: Academic Press, 1990.
  • 6Belhumeur P N, Hespanha J P, Kriegman D J. Eigenfaces vs. Fisherfaces:Recognition Using Class Specific Linear Projection [J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1997, 19(7): 711-720.
  • 7Kreyszig E. Introductory Functional Analysis with Applicaton [M]. Hoboken, New Jersey: John Wiley & Sons, 1978.
  • 8Chen L F, Mark Liao H Y, Lin J C, et al. A New LDA-based Face Recognition System Which can Solve the Small Sample Size Problem[J]. Pattern Recognition, 2000, 33(1): 1713-1726.

二级参考文献7

  • 1彭辉,张长水,荣钢,边肇祺.基于K-L变换的人脸自动识别方法[J].清华大学学报(自然科学版),1997,37(3):67-70. 被引量:69
  • 2Foley D H, Sammon J W. An Optimal Set of Discriminant Vectors.IEEE Trans on Computers, 1975,24(3):281-289
  • 3Fukunaga K. Introduction to Statistical Pattern Recognition. New York:Academic Press, 1990
  • 4Liu K, Cheng Y Q, Yang J Y. An Efficient Algorithm for Foley-sammon Optimal Set of Discriminant Vectors by Algebraic Method. International Journal of Pattern Recognition and Artificial Intelligence, 1992,6(5):817-829
  • 5Guo Yufei, Wu Lide. A Novel Optimal Discriminant Principle in High Dimensional Space. In: Proceeding of the 2nd International Conference on Development and Learning, 2002:1-8
  • 6Lawrence S, Giles C L, Tsoi A C. Face Recognition:a Convolutional Neural-network Approach. IEEE Trans. on Neural Networks,1997,8(1):98-113
  • 7金忠,杨静宇,陆建峰.一种具有统计不相关性的最佳鉴别矢量集[J].计算机学报,1999,22(10):1105-1108. 被引量:51

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部