期刊文献+

优化核参数的SVM在电能质量扰动分类中的应用 被引量:3

Recognition of Power Quality Disturbances Based on Support Vector Machine with Optimal Kernel-parameter
下载PDF
导出
摘要 针对短时电能质量变化和暂态扰动现象的不同特点,建立常见电能质量扰动的数学模型.运用小波变换对暂态电能质量扰动现象的内在特征进行提取,将扰动电压变化率绝对值、扰动能量变化量作为暂态电能质量扰动的特征向量.根据支持向量机的基本原理,给出一种推广误差上界估计判据,利用此判据进行最优核参数的自动选取,利用支持向量机进行训练和测试.结果表明,优化核参数的支持向量机分类器准确率高,实时性好. According to the different features of short-term power quality variation and transient disturbance,the mathematical models of frequent power quality disturbances(PSD) were established.In this method the time characteristic of the disturbance is extracted by wavelet transform;the duration,amplitude and frequency of the disturbance and the absolute value of voltage regulation are taken as the inputs of classifiers to test classification accuracies.The fundamental of support vector machine(SVM) based on structure risk minimization was introduced.An estimation formula of upper bound of generalization error was given,and the optimal kernel-parameter of the SVM was selected automatically by the formula.The classification accuracies indicates that the optimal kernel-parameter method can get optimal results.
出处 《哈尔滨理工大学学报》 CAS 北大核心 2011年第3期50-54,共5页 Journal of Harbin University of Science and Technology
关键词 支持向量机 电能质量扰动 小波变换 核参数 support vector machine power quality disturbances wavelet transform kernel-parameter
  • 相关文献

参考文献15

二级参考文献109

共引文献787

同被引文献22

引证文献3

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部