期刊文献+

均匀搜索粒子群算法 被引量:56

A Uniform Searching Particle Swarm Optimization Algorithm
下载PDF
导出
摘要 针对基本粒子群优化算法容易陷入局部最优解的问题,本文定义了PSO粒子搜索中心的概念,并对其随机状态下粒子搜索中心在全局最优解与局部最优解之间的概率密度进行了计算,在此基础上提出了粒子搜索中心在两个最优解之间均匀分布的均匀搜索粒子群算法,并通过7个Benchmark函数与基本PSO算法进行了对比实验及算法分析,实验分析结果表明,均匀搜索粒子群算法在函数优化尤其非均匀多峰值函数优化中具有更好的收敛速度及稳定性. It is well known that the Particle Swarm Optimization(PSO) algorithm easily falls into the local optimal solution.In this paper,we defined a concept of PSO particle-search center,and analyzed the probability density of the center between global and local optimal solutions in random state.A uniform searching particle swarm optimization(UPSO) algorithm whose particle-search center uniformly distributed between local and global optimal solutions is proposed based on that analysis.By analyzing the comparative experiments between UPSO and PSO algorithm with seven benchmark functions,we found that the UPSO and its improved algorithms are more stable and can improve the convergence efficiency in function optimization,especially in non-uniformly multimodal function optimization.
出处 《电子学报》 EI CAS CSCD 北大核心 2011年第6期1261-1266,共6页 Acta Electronica Sinica
基金 中央高校基本科研业务费专项资金资助项目(No.GK201002005) 陕西省工业攻关计划(No.2009K09-21) 西安市科技创新支撑计划(No.CXY1016-2)
关键词 粒子群算法 优化算法 均匀搜索 particle swarm optimization optimization algorithm uniform search
  • 相关文献

参考文献16

  • 1Kennedy J, Eberhart R C. Particle swarm optimization[ A]. Proc IEEE International Conference on Neural Networks[ C]. USA: 1EEE Press, 1995. 1942 - 1948.
  • 2Eberhart R C, Kennedy J. A new optimizer using particle swarm theory[ A]. Proc Sixth International Symposium on Mi- cro Machine and Human Science [ C ]. Nagoya, Japan: IEEE Press, 1995.39 - 43.
  • 3Eberhart R C, Simpson P K, Dobbins R W. Computational In- telligence PC Tools [ M ]. Boston, MA: Academic Press Profes- sional, 1996.
  • 4Shi Y, Eberhart R C. Parameter selection in particle swarm op- timization[A], Proc 7th Annual Conference on Evolutionary Programming[ C]. Washington DC: IEEE Press, 1998. 591 - 600.
  • 5Bergh F D, Engelbrecht A P. A study of particle swarm opti- mization particle trajectories~J]. Information Science,2006, 176 (8) :937 - 971.
  • 6Kazemibal, Mohanck. Multi-phase generalization of the particle swarm optimization algorithm[ A]. Proc the 2002 Congress on Evolutionary Computation[ C]. Honolulu: IEEE Computer Soci- ety,2002+ 489 - 497.
  • 7张长胜,孙吉贵,欧阳丹彤.一种自适应离散粒子群算法及其应用研究[J].电子学报,2009,37(2):299-304. 被引量:74
  • 8Shi Y, Eberhart R C. A modified particle swarm optimizer[ A]. Proc IEEE International Conference on Computation Intelli- gence[ C]. Anchorage: IEEE Press, 1998.69 - 73.
  • 9Sift Y, Eberhart R C. Fuzzy adaptive particle swarm optimiza- tion [A]. Proc IEEE International Congress on Evolutionary Computation[ C ]. Piscataway: IEEE Computer Society, 2001. 101 - 106.
  • 10胡旺,李志蜀.一种更简化而高效的粒子群优化算法[J].软件学报,2007,18(4):861-868. 被引量:334

二级参考文献41

  • 1赫然,王永吉,王青,周津慧,胡陈勇.一种改进的自适应逃逸微粒群算法及实验分析[J].软件学报,2005,16(12):2036-2044. 被引量:134
  • 2周驰,高亮,高海兵.基于PSO的置换流水车间调度算法[J].电子学报,2006,34(11):2008-2011. 被引量:24
  • 3王小平 曹立明.遗传算法-理论、算法与软件实现[M].陕西西安:西安交通大学出版社,2002.105-107.
  • 4J Kennedy,R C Eberhart. Particle swarm optimization[A].in: Proceedings of the IEEE International Joint Conference on Neural Networks [ C ]. Piscataway, NJ: IEEE Service Center, IEEE Press, 1995. 1942 - 1948.
  • 5Qingyun Yang,Jigui sun, Juyang Zhang, Chunjie Wang.A hybrid discrete particle swarm algorithm for open-shop problems [A]. Proceedings of the 6th International Conference on Simulated Evolution And Learning (SEAL 2006) [ C]. Hefei, China, LNCS 4247,2006. 158 - 165.
  • 6K Rameshkumar, R K Suresh, K M Mohanasundaram. Discrete particle swarm optimization (DPSO) algorithm for permutation flowshop scheduling to minimize makspan[ A ]. In: Proc. ICNC 2005 [C]. Changsha, China, LNCS 3612,2005.572 - 581.
  • 7Pant,M Radha, T Singh, V P.A simple diversity guided particle swarm optimization [A]. IEEE Congress on Evolutionary Computation[C]. Singapore, CEC2007. 2007. 3294 - 3299.
  • 8Christopher K. Monson, Kevin D. Seppi, Adaptive Diversity in PSO[ A]. Proceedings of the 8th annual conference on Genetic and evolutionary computation Seattle [ C ]. Washington, USA, 2006.59 - 66.
  • 9M Clerc: Discrete particle swarm optimization, illustrated by the Traveling Salesman Problem[A ]. In: New Optimization Techniques in Engineering[ C ]. Heidelberg, Germany, 2004. 219 - 239.
  • 10A C. Nearchou, The effect of various operators on the genetic search for large scheduling problems[J]. Int. J. Product. E-conom. 2004,88( 1 ) : 191 - 203.

共引文献844

同被引文献561

引证文献56

二级引证文献404

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部