期刊文献+

基于结构容许覆盖的框架构造

Construction of Frames Based on Structured Admissible Covering
下载PDF
导出
摘要 利用一般的结构容许覆盖理论,借助曲线波型框架的构造流程,得到了频域空间R^2(ξ)中的脊波型覆盖Q={QT}TεT,这里仿射变换T扮演着平移,膨胀和调制的作用.此外,通过联合正交脊波和所构造的脊波型覆盖构造了一些新的脊波型框架,即脊波型紧框架,对偶脊波型框架,以及单尺度对偶脊波型框架.与Candes的脊波紧框架相比,除了框架本身,其对偶框架也具有显式表达式. Using the general theory of the structured admissible covering, a Ridgelet-type covering Q={QT} of the frequency space R^2(ξ) is analogously introduced along with the constructed flow of Curvelet-type frame. The affine transformation T acts on the roles of dilation, translation, and modulation. Most of all, some different Ridgelet-type frames are given, such as Ridgelet-type tight frame, Dual Ridgelet-type frame, and Monoscale Dual Ridgelet-type frame, by combining the orthonomal Ridgelet with the constructed covering. Compared with Candes's Ridgelet tight frame, besides the analysis frames, their dual frames also have an explicit form.
出处 《数学物理学报(A辑)》 CSCD 北大核心 2011年第3期670-677,共8页 Acta Mathematica Scientia
基金 国家自然科学基金(60872138 61001156)资助
关键词 框架 结构容许覆盖 脊波 曲线波 Frame Structured admissible covering Ridgelet Curvelet
  • 相关文献

参考文献3

二级参考文献30

  • 1Young R M. An Introduction to Nonharmonic Fourier Series. New York: Academic Press, 1980.
  • 2Casazza P G. The art of frame theory. Taiwan Residents J of Math, 2000, 4 (2): 129-201.
  • 3Christensen O. An Introduction to Frames and Riesz Bases. Boston: Birkhauser, 2003.
  • 4Christensen O. Frames, Riesz bases, and discrete Gabor/wavelet expansions. Bulletin Amer Math Soc, 2001, 38(3): 273-291.
  • 5Mallat S著,杨力华,戴道清,黄文良,等译.信号处理的小波导引(第二版)(A Wavelet Tour of Signal Processing(Second Edition)).北京:机械工业出版社,2002.
  • 6Ron A, Shen Z. Weyl-Heisenberg frames and Riesz bases in L^2(R^d). Duke Math J, 1997, 89:237-282.
  • 7Wexler J, Raz S. Discrete Gabor expansions. Signal Proc, 1990, 21:207-221.
  • 8Casazza P G, Kutyniok G, Lammers M C. Duality principles in frame theory. J Fourier Anal Appl, 2004,10(4): 383- 408.
  • 9Christensen O, Stoeva D T. p-frames in separable Banach spaces. Advances in Computational Mathematics, 2003, 18:117-126.
  • 10Zhu Y C. q-Besselian frames in Banach spaces. Acta Mathematica Sinica, English Series, 2007, 23(9): 1707-1718.

共引文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部