摘要
针对含有未知时变参数和时变时滞的非线性参数化系统,提出了一种新的自适应迭代学习控制方法.该方法将参数分离技术与信号置换思想相结合,可以处理含有时变参数和时滞不确定性的非线性系统.设计了一种自适应控制策略,使跟踪误差的平方在一个有限区间上的积分渐近收敛于零.通过构造Lyapunov-Krasovskii型复合能量函数,给出了闭环系统收敛的一个充分条件.给出仿真例子验证了控制方法的有效性.
A new adaptive iterative learning control approach is proposed in this paper for a class of nonlinear systems with unknown time-varying parameters and time-varying delays. By using the parameter separation technique combined with the signal replacement mechanism, the approach can be applied to nonlinear systems with time-varying parameters and delay uncertainty. A novel adaptive control strategy is designed to ensure the tracking error converging to zero in the mean-square sense on the finite interval. A sufficient condition for the conver- gence is also given by constructing a Lyapunov-Krasovskii-like composite energy function. A simulation example is provided to illustrate the effectiveness of control algorithms proposed in this paper.
出处
《数学物理学报(A辑)》
CSCD
北大核心
2011年第3期682-690,共9页
Acta Mathematica Scientia
基金
国家自然科学基金(60974139)
中央高校基本科研业务费专项资金资助
关键词
非线性参数化系统
自适应迭代学习控制
时变参数
时变时滞
复合能量函数
Nonlinearly parameterized systems
Adaptive iterative learning control
Time-varying parameters
Time-varying delays
Composite energy function.