期刊文献+

具有公共的零点特征投影的有界线性算子的表示

Representation of Bounded Linear Operators with Equal Spectral Projections at Zero
下载PDF
导出
摘要 该文给出了与给定的Drazin可逆的有界线性算子有公共的零点特征投影的全体有界线性算子的表示.作为应用,获得了一些关于闭值域EP算子的特征及其扰动的结果. In this paper, the authors give the representation of all Drazin invertible operator B which shares the spectral projections at 0 with a given Drazin invertible operator A. Meanwhile, some related results for EP operators with closed range are obtained.
出处 《数学物理学报(A辑)》 CSCD 北大核心 2011年第3期729-736,共8页 Acta Mathematica Scientia
基金 安徽省优秀青年人才基金(2011SQRL070) 安徽省教育厅自然科学研究计划(2006KJ256B) 淮北师范大学2009年度校青年科研项目(700277)资助
关键词 DRAZIN逆 谱投影 算子方程 Drazin inverse Spectral projection Equation of operator
  • 相关文献

参考文献8

  • 1Campbell S L. Recent Applications of Generalized Inverses. London: Pitman, 1982.
  • 2Ben-Israel A, Greville T. Generalized Inverses: Theory and Applications (Second ed). New York: Springer- Verlag, 2003.
  • 3Castro-Gonzalez N, Koliha J J, Wei Y M. Error bounds for perturbation of the Drmzin inverse of closed operators with equal spectral projections. Applicable Analysis, 2002, 81:915 928.
  • 4Koliha J J, Stra~raba I. Power bounded and exponentially bounded matrices. Appl Math Comput, 1999, 44: 289-308.
  • 5Castro-Gonzalez N, Koliha J J, Wei Y M. Perturbation of the Drazin inverse for matrices with equal eigenprojections at zero. Linear Algebra Appl, 2000, 312:181 189.
  • 6Du Hongke, Deng C Y. The representation and characterization of Drazin inverses of operators on a Hilbert space. Linear Algebra Appl, 2005, 40T: 117-124.
  • 7Wei Y M, Wang G R. The perturbation theory for the Drazin inverse and its applications. Linear Algebra Appl, 1997, 258:179-186.
  • 8张海燕,张希花,杜鸿科.2×2上三角算子矩阵的Drazin谱[J].数学物理学报(A辑),2009,29(2):272-282. 被引量:5

二级参考文献13

  • 1Wei Y, Qiao S. The representation and approximation of the Drazin inverse if a linear operator in Hilbert space. Appl Math Comp, 2003, 138(1): 77-89
  • 2Du H K, Deng C Y. The representation and characterization of Drazin inverses of operators on a Hilbert space. Linear Algebra Appl, 2005, 407(1): 117-124
  • 3Barraa M, Boumazgour M. A note on the spectra of upper triangular operator matrix. Proc Amer Math Soc, 2003, 131(10): 3083-3088
  • 4Cao X H, Meng B. Essential appoximate point spectra and Weyl's theorem for operator matrices. J Math Anal Appl, 2005, 304(2): 759-771
  • 5Cao X H, et al. Weyl's theorem for upper triangular operator matrices. Linear Algebra Appl, 2005, 420(1): 61-73
  • 6Djordjevid D S. Perturbations spectra of operator matrices. J Operator Theroy, 2002, 48(2): 467-486
  • 7Djordjevic D S, Stanimirovic P S. On the generalized Drazin inverse and generalized resolvent. Czechoslovak Math J, 2001, 126(5): 617-634
  • 8Du H K, Pan J. Perturbation of spectrums of 2 x 2 operator matrices. Proc Amer Math Soc, 1994, 121(3): 761-776
  • 9Han J K, et al. Invertible completions of 2 × 2 operator matrices. Proc Amer Math Soc, 1999, 128(1): 119-123
  • 10Lee W Y. Wevl's theorem of operator matrices. Integr Equ Oper Theory, 1998, 32(1): 319-331

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部