期刊文献+

g-概率下的大数定律 被引量:1

Laws of Large Numbers for g-probabilities
下载PDF
导出
摘要 该文通过研究g-概率和给定概率集合P中概率的关系,建立了g-概率下广义的大数定律. The purpose of this article is to establish laws of large numbers for g-probabilities, which are defined via Peng's g-expectations. By studying the relationship of g-probabilities and probability measures in a given set P, it is showed that laws of large numbers in a broad sense for g-probabilities can be established via the corresponding laws for the probability measures in the set P.
作者 李文娟
出处 《数学物理学报(A辑)》 CSCD 北大核心 2011年第3期762-768,共7页 Acta Mathematica Scientia
关键词 倒向随机微分方程 g-概率 大数定律 Backward stochastic differential equation g-probability Laws of large numbers.
  • 相关文献

参考文献10

  • 1Chen Z, Epsten L. Ambiguity, risk, and asset returns in continuous time. Econometrica, 2002, 70: 1403- 1443.
  • 2Choquet C. Theory of capacities. Ann Inst Fourier, 1954, 5:131 295.
  • 3Dow J, Werlang S R C. Laws of large numbers for non-additive probabilities. Econpapers, 1993, 226.
  • 4Epstein L G, Schneider M. Independent and indistinguishably distributed. Journal of Economic Theory, 2003, 113:32-50.
  • 5I-Iuber P J, Strassen V. Minimax tests and the Neyman-Pearson lemma for capacities. Ann Statist, 1973, 1:251-263.
  • 6Marinacci M, Maccheroni F. A strong law of large numbers for capacities. Ann Probab, 2005, 33: 1171- 1178.
  • 7Pardoux E, Peng S. Adapted solution of a backward stochastic differential equation. Systems and Control Letters, 1990, 14:55 61.
  • 8Peng S. BSDE and related g-expectation. Pitman Research Notes in Mathematics Series (editors: E1 Karoui and L. Mazliak), 1997, 364:141 159.
  • 9Schmeidler D. Integral representation without additivity. Proceedings of the American Society, 1986, 97: 255 261.
  • 10Walley P, Fine T L. Towards a frequentist theory of upper and lower probability. Ann Statist, 1982, 10: 741-761.

同被引文献1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部