期刊文献+

基于改进RBF神经网络的最大动剪切模量确定

Determination of the Maximum Dynamic Shear Modulus Based on Improved RBF Neural Network
下载PDF
导出
摘要 采用径向基函数(RBF)神经网络的手段,直接建立最大动剪切模量Gmax与孔隙比e、围压σ3、固结比kc这3个影响因素的非线性关系,避开了寻找Gmax与各影响因素之间定量经验公式的繁琐工作。通过模式搜索法计算出径向基函数的扩展速度的最优值,使模型的预测误差最小。以福建标准砂为例,模式搜索法得出的扩展速度SPREAD最优值为2.287,RBF网络预测的Gmax平均相对误差为0.931 6%,误差很小,说明RBF神经网络能方便、有效地确定不同条件下的Gmax,具有一定的推广利用价值。除了对Gmax能够很好地预测外,RBF网络对G-γ关系曲线也能很好地模拟。 To avoid the complicated work of searching for quantitative experiential formula,a nonlinear relationship between maximum dynamic shear modulus(Gmax) and the influence factors including void ratio(e),cell pressure(σ3),and consolidation ratio(kc) was built directly by using Radial Basis Function(RBF) neural network.In addition,the optimal value of spread speed(SPREAD) of RBF was calculated by pattern search method to minimize the prediction error.Taking standard sand in Fujian province as an example,the optimal value of SPREAD calculated by pattern search method equals to 2.287,and the average relative error of Gmax predicted by RBF neural network is 0.931 6%,which is quite small.It shows that RBF neural network can determine Gmax under different conditions conveniently and effectively.Besides,the relationship curve of G-γ can also be simulated by this network.Therefore,the method of using RBF neural network to calculate the maximum dynamic shear modulus is recommended to be used widely.
出处 《长江科学院院报》 CSCD 北大核心 2011年第7期51-56,共6页 Journal of Changjiang River Scientific Research Institute
关键词 径向基神经网络 最大动剪切模量 Hardin公式 模式搜索法 radial basis function neural network maximum dynamic shear modulus Hardin formula pattern search method
  • 相关文献

参考文献8

  • 1HARDIN B O, BLACK W L. Vibration Modulus of Nor- mally Consolidated Clay[ J]. Soil Mechanics and Founda- tions Division, ASCE, 1968, 94 (2) : 353 - 369.
  • 2HARDIN B O, BLACK W L. Vibration Modulus of Nor- really Consolidated Clay (Closure) [ J ]. Soil Mechanics and Foundations Division, ASCE, 1969, 95(6) : 1531 - 1537.
  • 3SEED H B, WONG R T, IDRISS I M, et al. Modulus and Damping Factors for Dynamic Analysis of Cohesion- less Soils [J]. Geotechnical Engineering, ASCE, 1986, 112(11) : 1016 -1032.
  • 4袁晓铭,孙静.非等向固结下砂土最大动剪切模量增长模式及Hardin公式修正[J].岩土工程学报,2005,27(3):264-269. 被引量:32
  • 5SEED H B, IDRISS I M. Soil Moduli and Damping Fac- tors for Dynamic Response Analysis, Report No. EERC 70 - 10[ R]. Berkeley : Earthquake Engineering Research Center, University of California, 1970.
  • 6沈强,陈从新,汪稔.边坡位移预测的RBF神经网络方法[J].岩石力学与工程学报,2006,25(z1):2882-2887. 被引量:19
  • 7李红,彭涛.基于BP、RBF神经网络混凝土抗压强度预测[J].武汉理工大学学报,2009,31(8):33-36. 被引量:37
  • 8雷英杰,张善文,李续武,等.MATLAB遗传算法工具箱及运用[M].西安:西安电子科技大学出版社,2005.

二级参考文献12

  • 1赵悟,冯忠绪.RCC及SFRC的振动拌和装置研究[J].筑路机械与施工机械化,2005,22(5):15-17. 被引量:9
  • 2赵胜利,刘燕.基于RBF网络的商品混凝土强度预测分析[J].计算机工程,2005,31(18):36-37. 被引量:9
  • 3祝龙根,杜坚.不同类型共振柱仪对比试验[J].大坝观测与土工测试,1990,14(3):26-32. 被引量:17
  • 4[8]Moody J,Darken C.Learning with localized received fields[A].In:Hinton T G,Sejnowski T ed.Proceedings of the 1988 Connectionist Models Summer School[C].Menlo Park,CA:Morgan Kaufmann Publishers,1988.775-790.
  • 5[9]Moody J,Darken C.Fast learning in networks of locally-tuned processing units[J].Neural Computation,1989,1(2):281-294.
  • 6Pitilakis KD, Anastassiadis A, Raptakis D. Field and laboratory determination of dynamic properties of natural soil deposits [A]. Proceedings of the 10th World Conference on Earthquake Engineering[C]. 1992: 1275-1280.
  • 7Hardin BO, Black WL. Vibration modulus of normally consolidated clay [J]. Soil Mechanics and Foundations Division, ASCE, 1968, 94(2): 353-369.
  • 8Hardin BO, Black WL. Vibration modulus of normally consolidated clay (closure) [J]. Soil Mechanics and Foundations Division, ASCE, 1969, 95(6): 1531-1537.
  • 9Zen k, Higuchi Y. Prediction of vibratory shear modulus and damping ratio for cohesive soils [A]. Proceedings of the 8th World Conference on Earthquake Engineering[C]. 1984, 3: 23-30.
  • 10Seed HB, Wong RT, Idriss IM, Tokimatsu K. Modulus and damping factors for dynamic analysis of cohesionless soils [J]. Geotechnical Engineering, ASCE, 1986, 112(11): 1016-1032.

共引文献85

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部