期刊文献+

时标上脉冲动力方程周期边值问题的拟线性化方法 被引量:2

Quasilinearization Method for Impulsive Dynamic Equations with Periodic Boundary Value Problems on Time Scales
下载PDF
导出
摘要 本文研究了一类时标上脉冲动力方程周期边值问题解的收敛性问题.利用时标上一阶脉冲动力不等式﹑上下解和单调迭代技巧证明了该问题解的一致收敛性结果,并进一步采用拟线性化方法和分析技巧获得了该方程在周期边值条件下两个逼近解序列高阶收敛的充分性判据.本文所得结果发展了时标上动力方程定性理论的结果. In this paper, the convergence of the solution to a class of periodic boundary value problem of impulsive dynamic equations on time scales is investigated. By using first-order impulsive dynamic inequality on time scales, the upper and lower solution method and the monotone iterative technique, the uniform convergence of this problem is proved. Meanwhile, by utilizing the quasilinearization method and analytical technique, some sufficient criteria for the rapid convergence of two sequences of approximate solution are obtained on the periodic boundary value condition. Our results extend several known results of qualitative theory of dynamic equations on time scales.
作者 王培光 黄倩
出处 《工程数学学报》 CSCD 北大核心 2011年第4期532-536,共5页 Chinese Journal of Engineering Mathematics
基金 国家自然科学基金(10971045) 教育部重点科研项目(207014) 河北省自然科学基金(A2009000151)~~
关键词 时标 脉冲动力方程 周期边值问题 拟线性化方法 高阶收敛 time scales impulsive dynamic equations periodic boundary value problems quasilin- earization method higher order convergence
  • 相关文献

参考文献4

  • 1Mohapatra R N, Vajravelu K, Yin Y. Generalized quasilinearization method for second-order boundary value problems[J]. Nonlinear Analysis, 1998, 33:443-453.
  • 2Lakshmikantham V, Malek S. Generalized quasilinearization[J]. Nonlinear World, 1994, (1): 59-63.
  • 3L Bohner M, Peterson A, Advances in Dynamic Equations on Time Scales[M]. Boston: Birkh~user, 2003.
  • 4柴国庆.脉冲周期边值问题拟线性化方法[J].系统科学与数学,2003,23(3):390-397. 被引量:2

二级参考文献10

  • 1Lakshmikantham V,Bainov D D and Simeonov P S. Theory of Impulsive Differential Equations.World Scientific. Singpore, 1989.
  • 2Guo Dajun. Second order impulsive integro-differential equations on unbounded domains in Banach suaces. Nonlinear Analysis, 1999, 35: 413-423.
  • 3Frigon M and O'Regan D. First order impulsive initial and periodic with variable moments. J.Math. Anal. Appl., 1999, 233: 730-739.
  • 4Lakshmikantham V, Malek S. Generalized quasilineaxization. Nonlinear World., 1994, (1): 59-63.
  • 5Mohapatra R N, Vajravelu K. Generalized quasilinearization method and rapid convergence for first order initial value problems. J. Math. Anal. Appl., 1997, 207: 206-219.
  • 6Eloe P W, Zhang Yongzhi. A quaclric monotone iteration scheme for two-point boundary value problems for ordinary differential equations. Nonlinear Analysis, 1998, 33: 443-453.
  • 7Mohapatra R N, Vajravelu K, Yin Y. Generalized quasilinearization method for second-order boundary value problems. Nonlinear Analysis. 1999, 36: 799-806.
  • 8Guo Dajun, Lakshmilkantham V and Liu Xinzhi. Nonlinear Integral Equations in Abstract Space.Kluwer Academic Publishers. 1996, 255-256.
  • 9韦忠礼.Banach空间一阶非线性脉冲微分方程周期边值问题的解[J].系统科学与数学,1999,19(3):378-384. 被引量:17
  • 10柴国庆.Banach空间中非线性脉冲微分-积分方程的极值解[J].数学物理学报(A辑),2000,20(1):74-80. 被引量:8

共引文献1

同被引文献10

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部