期刊文献+

复杂非线性系统的H_∞控制(英文)

The H_∞ Controller of Complex Nonlinear Systems
下载PDF
导出
摘要 本文针对含有不确定性,时延和未知系统状态的复杂非线性系统,考虑了输出反馈控制问题.应用模糊T-S模型逼近非线性系统建模,RBF神经网络作为补偿器来消除建模误差和不确定性.所设计的控制器能够使得闭环系统满足期望的H∞性能. The output feedback control problem is considered for a class of complex nonlinear systems with time delays and unknown states, and under uncertainties. Fuzzy T-S models are used to approximate the complex nonlinear system, and RBF neural networks act as a compensator to eliminate the approximating error and the uncertainties. The controller is designed to ensure that the closed-loop system satisfies the desired H ∞ performance. Simulation result demonstrates the effectiveness of the developed control scheme.
出处 《工程数学学报》 CSCD 北大核心 2011年第4期537-543,共7页 Chinese Journal of Engineering Mathematics
基金 The National Natural Science Foundation of China(60974028)
关键词 模糊T-S模型 RBF神经网络 非线性系统 不确定性 时延 fuzzy T-S model RBF neural networks nonlinear systems uncertainties time delays
  • 相关文献

参考文献8

  • 1Guerra T M, Vermeriren L. Control law for Takagi-Sugeno fuzzy models[J]. Fuzzy Sets and Systems, 2001, 120(1): 95-108.
  • 2Chen B S, et a/. Mixed H2/Hoo fuzzy output feedback control design for nonlinear dynamic systems: an LMI approach[J]. IEEE Transaions on Fuzzy Systems, 2000, 8(3): 249-265.
  • 3Chen B, et al. Robust Hc~ control of Takagi-Sugeno fuzzy systems with noindent state and input time delays[J]. Fuzzy Sets and Systems, 2009, 160(4): 403-422.
  • 4Hu S S, Liu Y. Robust H~ control of multiple time-delay uncertain nonlinear system using fuzzy and noindent adaptive neural network[J]. Fuzzy Sets and Systems, 2004, 146(3): 403-420.
  • 5Wang R J, et al. Stabilizability of linear quadratic state feedback for uncertain fuzzy time-delay systems[J]. IEEE Transactions on Systems, Man and Cybernetics-Part B: Cybernetics, 2004, 34(2): 1288-1292.
  • 6Chen W S, et al. Adaptive NN backstepping output-feedback control for strict-feedback stochastic systems with time-varying delays[J]. IEEE Transactions on Systems, Man and Cybernetics-Part B: Cybernetics, 2010, 40(3): 939-950.
  • 7Li H X, Tong S C. A hybrid adaptive fuzzy control for a class of nonlinear MIMO systems[J]. IEEE Transactions on Fuzzy Systems, 2003, 11(1): 24-34.
  • 8Yu W S. Tracking-based adaptive fuzzy-neural control for MIMO uncertain robotic systems with time delays[J]. Fuzzy Sets and Systems, 2004, 146(3): 375-401.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部