期刊文献+

Star网络S_6的Hamilton圈分解 被引量:3

Decomposition of Star Network S_6 into Hamilton Cycles
下载PDF
导出
摘要 Star网络Sn作为超立方体(一种著名互连网络)的替代品而被许多作者研究.与超立方体相比较,该网络有较小的直径和顶点度.在本文中,我们证明了关于Star网络Sn的一个猜想当n=6时是正确的,即S6是两个边不交的Hamilton圈及一个完美对集的并. The Star network S n as a substitute for hypercube (a well-known interconnection network) has been studied by a number of researchers. As compared with the hypercube, the Star network has small diameter and degree. In this paper, we prove that the conjecture on the Star network S n for n = 6 is true. Namely, S 6 is the union of two edge-disjoint Hamiltonian cycles and a perfect matching.
出处 《工程数学学报》 CSCD 北大核心 2011年第4期565-568,共4页 Chinese Journal of Engineering Mathematics
基金 国家自然科学基金(10771091)~~
关键词 CAYLEY图 HAMILTON圈 Star网络 完美对集 Cayley graph Hamiltonian cycle Star network perfect matching
  • 相关文献

参考文献6

  • 1Akers S K. Krishnamurthy B. A group-theoretic model for symmetric interconnection networks[J]. IEEE Transactions on Computers, 1989, 38:555-566.
  • 2Bondy J A, Murty U S R. Graph Theory with Applications[M]. London: The Macmillan Press Ltd, 1976.
  • 3Jwo J S, et al. Embedding of cycles and grids in Star graphs[J]. Journal of Circuits Systems and Computers, 1991, 1(1): 43-74.
  • 4张禾瑞.近世代数基础[M].北京:高等教育出版社,1978.94-95.
  • 5路建波,师海忠.Star网络S_5的Hamilton圈分解[J].数学的实践与认识,2010,40(4):193-197. 被引量:3
  • 6师海忠.关于Star一网络的一个猜想[C]//中国几何设计与计算新进展:第三届中国几何设计与计算大会论文集.北京:电子工业出版社,2007:252.254.

二级参考文献6

  • 1Akers S K, krishnamurthy B. A group-theoretic model for symmetric interconnection networks[J]. IEEE Transactions on Computers, 1989, 38: 555-566.
  • 2Arkady Kanevsky, Chao feng. On the embedding of cycles in panvake graphs[J]. Parallel Computing, 1995, 21: 923-936.
  • 3J-S Jwo, Lakshmivarahan S, Dhall S K. Embedding of cycles and grids in star graphs[J]. J Circuits syst Comput, 1991, 1: 43-74.
  • 4师海忠.关于Star-网络的一个猜想[C]//张贵仓.中国几何设计与计算新进展:第三届中国几何设计与计算大会论文集.北京:电子工业出版社,2007:252.254.
  • 5Zaks S. A new algorithm for generation of permutations[R]. BIT Numberical Mathematics, 1984, 24: 196-204.
  • 6张禾瑞.近世代数基础[M].北京:高等教育出版社,1978.94-95.

共引文献61

同被引文献36

  • 1张禾瑞.近世代数基础[M].北京:高等教育出版社,2008:1-175.
  • 2张禾瑞.近世代数基础[M].北京:高等教育出版社,1978.94-95.
  • 3Akers S B,Krishnamurthy B.A group-theoretic model for interconnection networks[J].IEEE Transactions on computers,1989,38(4):555-565.
  • 4Bondy J A,Murty U S R.Graph Theory with Applications[M].London: Macmillian Press,1976.
  • 5Huang Kai.高等计算机系统结构[M].王鼎兴,等译.北京:清华大学出版社,南宁:广西科学技术出版社,1992.
  • 6Du D Z,Hsu D F,et al.Combinatorial Network Theory[M].Kluwer Academic Publishers,1996:65-105.
  • 7Lakshmivarahan S,Jwo J S,Dhall S.Symmetric in interconnection networks based on Cayley graph of permutation groups:A survey[J].Parallel Computing,1993,19(4):361-407.
  • 8Walker D,Latifi S.Improving bounds on link failure tolerance of the star graph[J].Information Sciences,2010,180(13):2571-2575.
  • 9Wan Min,Zhang Zhao.Akind of condition vertex connectivity of star graphs[J].Applied Mathematics Letters,2009,22(2):264-267.
  • 10Wang Jian,Xu Xi-rong,Zhu De-jun,et al.On the bounds of feedback numbers of(n,k)-star graphs[J].Information Processing Letters,2012,2(12):473-478.

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部