摘要
目的对某类特殊的正整数a,b,c,寻找给出丢番图方程ax4+by4=cz2的全部正整数解的方法。方法利用初等方法把方程ax4+by4=cz2化为方程x2+my2=z2,给出方程ax4+by4=cz2的全部正整数解。结果给出了当(a,b,c)=(5,3,2)时方程ax4+by4=cz2的全部正整数解。结论利用上述方法可以解决一类方程ax4+by4=cz2的求解问题,从而拓展了Mordell等人关于ax4+by4=cz2的结果。
Aim To find the method of all positive integer solutions of Diophantine equation ax4+by4=cz2 for some special positive integers a,b and c.Methods ax4+by4=cz2 is changed into x2+my2=z2 by using elementary methods,then all positive integer solutions of Diophantine equation ax4+by4=cz2 are given.Results The all positive integer solutions of Diophantine equation ax4+by4=cz2 are given when(a,b,c)=(5,3,2).Conclusion The foregoing method may be used to solve a class of equations such as ax4+by4=cz2 and the results of equation ax4+by4=cz2 which is studied by Mordell and others are developed hereof.
出处
《宝鸡文理学院学报(自然科学版)》
CAS
2011年第2期1-3,10,共4页
Journal of Baoji University of Arts and Sciences(Natural Science Edition)
基金
辽宁省教育厅科研立项课题(20401232)
关键词
丢番图方程
正整数解
两两互素
Diophantine equation
positive integer solution
prime to each other