摘要
本文提出一种基于遗传算法和监督学习方法的有效模糊神经网络控制.这种控制器采用并行处理的模糊推理网络,具有两个重要特点:自适应和学习性.
This paper proposes an effective fuzzy neural network controller based on genetic algorithm (GA) and supervised gradient descent learning.The fuzzy network control processing can be viewed as a parallel neural network where each neuron represents a fuzzy membership function and each link represents the weight of a fuzzy rule,and it has two important characteristics of adaptation and learning.The effectiveness of the proposed scheme is illustrated through simulation and temperature control processes.
出处
《控制理论与应用》
EI
CAS
CSCD
北大核心
1999年第6期886-891,共6页
Control Theory & Applications