期刊文献+

用于传感器非线性误差校正的新颖神经网络 被引量:10

A Novel CMAC Neural Network for Correcting the Sensor's Nonlinear Errors
下载PDF
导出
摘要 该文阐述了用神经网络校正传感系统非线性误差的原理和方法 ,提出了一种新颖的简化小脑模型神经网络 (SCMAC)及其模型、算法与实现技术 .模型、算法采用直接权地址映射技术 ,以训练样本的输入为地址 ,建立起输入与权重的关系 .任意输入作为相近的权地址 ,即可找到对应的权 ,经过联想插补后可获得高精度输出 .此外 ,采用磁盘文件存储、寻址权重等方法 ,避免了微机内存溢出 ,使得实现容易 .最后给出了一个仿真实验 .实验结果表明 ,用 SCMAC校正后 。 In this paper, the principles and the methods for correcting the nonlinear errors of the sensor system with a neural network are shown, and a novel simplified cerebella model articulation controller (SCMAC), which includes its model, algorithm and realized techniques, is proposed. The direct weight address mapping techniques are used in this model and algorithm, and the relation between the inputs and the weights is established by taking the inputs of training samples as their weight address, and the corresponding weights are found for any inputs by taking it as similar weight address, and the accurate outputs are obtained by the associable insertion algorithm. In addition, the weights are stored and addressed in a magnetic disk file, therefore, the overflow of internal memory of microcomputer are avoided, and the SCMAC is easily realized. Finally, a simulation experiment is given and the results show that the nonlinear errors of the sensor system are decreased to approximate zero after correcting with a SCMAC.
作者 朱庆保
出处 《软件学报》 EI CSCD 北大核心 1999年第12期1298-1303,共6页 Journal of Software
基金 江苏省科委应用基础项目基金
关键词 传感器 非线性误差 校正 神经网络 CMAC Cerebella model articulation controller (CMAC), sensor, nonlinear errors, correction, simulation.
  • 相关文献

参考文献5

  • 1刘慧,许晓鸣,张钟俊.小脑模型神经网络改进算法的研究[J].自动化学报,1997,23(4):482-488. 被引量:12
  • 2Lin Chun Shin,IEEE Trans Syst Man Cybern B,1998年,28卷,2期,231页
  • 3Ker Jar Shone,IEEE Trans Neural Networks,1997年,8卷,6期,1545页
  • 4Lin Chun Shin,IEEE Trans Neural Networks,1997年,8卷,6期,1281页
  • 5Lee Chaujhy,J Engineers,1996年,19卷,3期,309页

共引文献11

同被引文献40

  • 1杨延西,刘丁.基于ANFIS的温度传感器非线性校正方法[J].仪器仪表学报,2005,26(5):511-514. 被引量:17
  • 2周鸣争,汪军.基于支持向量机的传感器非线性误差校正[J].电子科技大学学报,2006,35(2):242-245. 被引量:10
  • 3Cortes C, Vapnik V. Support vector networks [J]. Machine Lea ring, 1955, 20 (1): 1-25.
  • 4Gunn S. Support vector machine for classification and regression [R]. University of Southampton: Image Speck&Intelligent System Group, 1998.
  • 5Luo Zhong, Zhao Zhongrning, Zhu Chongguangr The Unthvourable Effects of Hash Coding on CMAC Convergence and Compensatory Measure. IEEE International Conference on Intelligent Processing Systems, 1997, 1 : 419-422.
  • 6Leondes C T.CMAC-based Techniques for Adaptive Learning Control. Optimization Techniques.CA,USA:Acdaemic Press, 1998: 227-304.
  • 7Chun-Shin Lin, Ching-Tsan Chiang. Integration of CMAC Technique and Weighted Regression for Efficient Learning and Output Different - iablity. IEEE Transactions on Systems, Man and Cybernetics, Part B, 1998, 28(2): 231-237.
  • 8Cortes c Vapnik, V. Support vector Networks. Machine Learning 1995,20(1):1 -25.
  • 9Vapnik V N. Statistical learning Theory New York: Jone wileg 1998.
  • 10Vapnik V. An overview of statstical learning Theory. IEEE Transaction on Neural Networks. 1999, 10 (5) : 988 - 999.

引证文献10

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部