期刊文献+

基于遗传策略和神经网络的非监督分类方法 被引量:3

The Unsupervised Classification Using Evolutionary Strategies and Neural Networks
下载PDF
导出
摘要 文章提出了一种新的基于遗传策略和模糊 ART(adaptive resonance theory)神经网络的非监督分类方法 .首先 ,利用原有的训练样本对模糊 ART神经网络进行非监督训练 ,然后 ,采用遗传策略为模糊 ART神经网络增加各类族边界邻域内的训练样本点 ,再对模糊 ART神经网络进行有监督训练 .这种方法解决了训练样本在较少条件下的 ART系列神经网络的学习与分类问题 ,提高了 ART系列神经网络的分类性能 。 A new unsupervised classification method using evolutionary strategies and fuzzy ART (adaptive resonance theory) neural networks is proposed in this paper. First, fuzzy ART neural networks is trained by original input samples under unsupervised way. Then evolutionary strategies is used to generate new training samples near the clusters boundaries of neural networks. Therefore the weights of fuzzy ART neural networks can be revised and refined by training those new generated samples under supervised way. The proposed method resolves the training problem for ART serial neural networks when there are only less training samples available. Consequently, it enhances the performance of ART serial neural networks and extends their application.
出处 《软件学报》 EI CSCD 北大核心 1999年第12期1310-1315,共6页 Journal of Software
基金 江西省自然科学基金
关键词 神经网络 遗传算法 ART 非监督分类 Neural network, genetic algorithms, ART(adaptive resonance theory), unsupervised classification.
  • 相关文献

参考文献4

  • 1Paul S W,Proc 10th International FL AIRS Conference,1997年,1211页
  • 2Huang J,Neural Networks,1995年,8卷,2期,202页
  • 3Yao X,Int J Intelligent Systems,1993年,8卷,4期,539页
  • 4Hwang J N,Proc International Joint Conference on Neural Networks,1990年,433页

同被引文献47

引证文献3

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部