期刊文献+

无条件C的广义αη-单调性的判别标准(英文)

Criteria for Generalized αη-Monotonicities Without Condition C
下载PDF
导出
摘要 用α和η关于第一分量是仿射的且是斜对称的条件代替条件C,得到如下结论:(1)如果一个函数的梯度是(严格)αη-伪单调的,则该函数是(严格)伪αη-不变凸的;(2)如果一个函数的梯度是拟αη-单调的,则该函数是拟αη-不变凸的. If α and η are affine in the first argument and skew instead of ConditionC,the following results are obtained:(i) if the gradient of a function is(strictly)αη-pseudomonotone,the function is(strictly) pseudo αη-invex;(ii) if the gradient of a function is quasi αη-monotone,the function is quasi αη-invex.
出处 《运筹学学报》 CSCD 2011年第2期11-18,共8页 Operations Research Transactions
基金 Supported by the Natural Science Foundation of China(No.10771228) the Natural Science Foundation of Chongqing(No.CSTC,2010BB2090) Education Commission project Research Foundation of Chongqing (No.KJ110617) Chongqing Key Laboratory of Operations Research and System Engineering(No.CSTC, 2006CA8001)
关键词 数学规划 广义αη-单调性 广义αη-不变凸函数 仿射 mathematical programming generalized αη-monotonicity generalized αη-invex functions affine
  • 相关文献

参考文献12

  • 1Hanson M A. On sufficiency of the Kuhn-Tucker conditions[J]. Journal of Mathematical Analysis and Applications, 1981, 80: 545-550.
  • 2Noor M A, Noor K I. Some characterizations of strongly preinvex functions[J]. Journal of Mathematical Analysis and Applications, 2006, 316: 697-706.
  • 3Mishra S K, Noor M A. Some nondifferentiable multiobjective programming problems[J]. Journal of Mathematical Analysis and Applications, 2006, 316: 472-482.
  • 4Noor M A, Noor K I. On strongly generalized preinvex functions[J]. Journal of Inequalities in Pure and Applied Mathematics, 2005, 102: 1-8.
  • 5Yang X M, Yang X Q, Teo K L. Criteria for generalized invex monotonicities[J]. European Journal of Operational Research, 2005, 164: 115-119.
  • 6Karamardian S, Schaible S. Seven kinds of Monotone Maps[J]. Journal of Optimization Theory and Applications, 2001, 66: 287-308.
  • 7Ruiz-Garzdn G, Osuna-gomez R, Rufian-Lizana A. Generalized invex monotonicity[J]. Euro van Journal of Operational Research, 2003, 144: 501-512.
  • 8Mohan S R, Neogy S K. On invex set and preinvex functions[J]. Journal of Mathematical Analysis and Applications, 1995, 189: 901-908.
  • 9Peng J W. Criteria for generalized invex monotonicities without Condition C[J]. European Journal of Operational Research, 2006, 170: 667-671.
  • 10Rudin W. Functional Analysis[M]. New York: McGraw-Hill, 1991.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部