期刊文献+

一类不可微优化的Fritz-John条件

Fritz-John Condition for a Class of Nondifferntiable Optimization
下载PDF
导出
摘要 基于星形集空间的性质,定义一类星形可微函数.这类函数是方向可微的,其方向导数可以表示成两个正齐次非负连续函数之差,其星形微分为一星形集对.对于含有不等式约束条件的星形可微优化问题,给出一个Fritz-John形式的最优性必要条件. Based on the properties of the space of star-shaped sets,a class of starshaped differentiable functions,whose directional derivatives are representable as a difference of two nonnegative positively homogeneous continuous functions,is defined.The necessary optimality condition of Fritz-John type for an optimization problem with star-shaped differentiable inequality constraints is given.
出处 《运筹学学报》 CSCD 2011年第2期77-84,共8页 Operations Research Transactions
基金 国家自然科学基金(No.11071029)
关键词 不可微优化 星形集空间 星形微分 Fritz-John条件 nondifferntiable optimization the space of star-shaped sets star-shaped differential Fritz-John condition
  • 相关文献

参考文献15

  • 1Pschenichnyi B N. Necessary Conditions for an Extremum Problems[M]. New York, Marcel Dekker, 1971.
  • 2Demyanov V F, Polyakova L N, Rubinov A M. On One Generalization of The Concept of Subdifferential[C]. All Union Conference On Dynamic Control, Sverdlovsk, 1979: 79-84.
  • 3Demyanov V F, Rubinov A M. On quasidifferentiable functionals[J]. Doklady Akademii Nauk USSR, 1980, 250: 21-25.
  • 4Demyanov V F, Rubinov A M. Constructive Nonsmooth Analysis[M]. Berlin: Peter Lang, 1995.
  • 5Shapiro A. On optimality conditions in quasidifferentiable optimization[J]. SIAM Journal on Control and Optimization, 1984, 22: 610-617.
  • 6Polyakova L N. On the minimization of a quasidifferentiable function subject to equality-type constraints[J]. Mathematical Programming Study, 1986, 29: 44-55.
  • 7Kuntz L, Scholtes S. Constraint qualifications of quasidifferentiable optimization[J]. Mathematical Programming, 1993, 60: 339-347.
  • 8Eppler E, Luderer B. The Lagrange principle and quasidifferential calculus[J]. University of Technology of Karl-Marx-Stadt, 1987, 29: 187-192.
  • 9高岩.拟可微函数的弱 Fritz—John 条件[J].运筹学杂志,1990,9(2):43-44. 被引量:3
  • 10Luderer B. Directional derivative estimates for the optimal value function of a quasidifferentiable programming problem[J]. Mathematical Programming, 1991, 51: 333-348.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部